Cargando…
The Yes-associated protein controls the cell density regulation of Hedgehog signaling
The evolutionarily conserved Hedgehog (Hh) signaling pathway is essential for correct embryogenesis and is misregulated in several malignancies. In cell culture, Hh-sensitive cells display a striking dependence on cell density with active Hh signaling requiring cell-to-cell contact. As the Hippo/YAP...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5189961/ https://www.ncbi.nlm.nih.gov/pubmed/25111861 http://dx.doi.org/10.1038/oncsis.2014.27 |
Sumario: | The evolutionarily conserved Hedgehog (Hh) signaling pathway is essential for correct embryogenesis and is misregulated in several malignancies. In cell culture, Hh-sensitive cells display a striking dependence on cell density with active Hh signaling requiring cell-to-cell contact. As the Hippo/YAP system is tightly linked to cell density control and contact inhibition, we investigated the cross-talk between the two pathways. Our data reveal that the suppression of Hh signaling in the absence of cellular contacts is independent of primary cilia and is mediated by the YAP oncogene. Overexpression of YAP blocks Hh signaling whereas RNA interference-mediated knockdown of YAP enhances Hh/GLI activity. Despite this negative regulation, Hh signaling promotes YAP activity through post-transcriptional mechanisms, resulting in a negative feedback loop. In vivo, we found strong nuclear YAP immunoreactivity restricted to compartments with low Hh pathway activity in human and mouse pancreatic cancer. Finally, we identified protease-activated receptors (PARs) as molecules being able to override the inverse Hippo/Hh regulation, potentially giving tumors a mechanism to utilize both oncogenic pathways in parallel. |
---|