Cargando…
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resour...
Autores principales: | Zhang, Yue, Song, Bin, Zhang, Ying, Du, Xiaojiang, Guizani, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191002/ https://www.ncbi.nlm.nih.gov/pubmed/27916841 http://dx.doi.org/10.3390/s16122021 |
Ejemplares similares
-
A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network
por: Zhao, Di, et al.
Publicado: (2020) -
Vehicle-Type Detection Based on Compressed Sensing and Deep Learning in Vehicular Networks
por: Li, Yinghua, et al.
Publicado: (2018) -
A Low-Latency and Energy-Efficient Neighbor Discovery Algorithm for Wireless Sensor Networks †
por: Gu, Zhaoquan, et al.
Publicado: (2020) -
Reinforcement learning based framework for COVID-19 resource allocation
por: Zong, Kai, et al.
Publicado: (2022) -
Deep Reinforcement Learning-Assisted Optimization for Resource Allocation in Downlink OFDMA Cooperative Systems
por: Tefera, Mulugeta Kassaw, et al.
Publicado: (2023)