Cargando…
Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features...
Autores principales: | Xu, Huile, Liu, Jinyi, Hu, Haibo, Zhang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191029/ https://www.ncbi.nlm.nih.gov/pubmed/27918414 http://dx.doi.org/10.3390/s16122048 |
Ejemplares similares
-
Seizure classification in EEG signals utilizing Hilbert-Huang transform
por: Oweis, Rami J, et al.
Publicado: (2011) -
Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform
por: Luque, Joaquin, et al.
Publicado: (2020) -
Detection of the third and fourth heart sounds using Hilbert-Huang transform
por: Tseng, Yi-Li, et al.
Publicado: (2012) -
Method for Fault Diagnosis of Temperature-Related MEMS Inertial Sensors by Combining Hilbert–Huang Transform and Deep Learning
por: Gao, Tong, et al.
Publicado: (2020) -
Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine
por: Chen, Lili, et al.
Publicado: (2017)