Cargando…

A Height Estimation Approach for Terrain Following Flights from Monocular Vision

In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive t...

Descripción completa

Detalles Bibliográficos
Autores principales: Campos, Igor S. G., Nascimento, Erickson R., Freitas, Gustavo M., Chaimowicz, Luiz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191052/
https://www.ncbi.nlm.nih.gov/pubmed/27929424
http://dx.doi.org/10.3390/s16122071
Descripción
Sumario:In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of [Formula: see text] for positives and [Formula: see text] for negatives, while the height estimation algorithm presented good accuracy.