Cargando…

Resonance-Based Reflector and Its Application in Unidirectional Antenna with Low-Profile and Broadband Characteristics for Wireless Applications

In this research, the novel concept of a resonance-based reflector (RBR) was proposed, and a ring-shaped RBR was utilized to design a unidirectional antenna with low-profile and broadband characteristics. Research found the ring operates as two half-wavelength (λ/2) resonators. Then, the resonance e...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Lin, Xie, Ji-yang, Sun, Kai, Jiang, Xing, Li, Si-min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191072/
https://www.ncbi.nlm.nih.gov/pubmed/27941702
http://dx.doi.org/10.3390/s16122092
Descripción
Sumario:In this research, the novel concept of a resonance-based reflector (RBR) was proposed, and a ring-shaped RBR was utilized to design a unidirectional antenna with low-profile and broadband characteristics. Research found the ring operates as two half-wavelength (λ/2) resonators. Then, the resonance effect transforms the reflection phase of the ring RBR, and achieves a reflection phase of 0° < ϕ < 180° in a wide frequency range above the resonance. Then, the in-phase reflection characteristic (−90° < ϕ < 90°) can be obtained in the wide frequency band by placing an antenna above the RBR with a distance smaller than λ/4. Two unidirectional antennas, named Case 1 and Case 2, were designed with the ring-shaped RBRs and bowtie antennas (RBR-BAs). The impedance bandwidths of Case 1 and the Case 2 are 2.04–5.12 GHz (86.3%) and 1.97–5.01 GHz (87.1%), respectively. The front-to-back ratio (FBR, an important parameter to measure the unidirectional radiation) of Case 1 ranges from 5–9.9 dB for frequencies 2.04–2.42 GHz, and the FBR of Case 2 ranges from 5–16 dB for frequencies 2.16–3.15 GHz. The proposed concept of RBR is desirable in wideband unidirectional antenna design, and the designing antennas can be used at the front end of wireless systems—such as indoors communication, remote sensing, and wireless sensor systems—for signal receiving or transmitting.