Cargando…
Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study
The popularity of using wearable inertial sensors for physical activity classification has dramatically increased in the last decade due to their versatility, low form factor, and low power requirements. Consequently, various systems have been developed to automatically classify daily life activitie...
Autores principales: | Awais, Muhammad, Palmerini, Luca, Bourke, Alan K., Ihlen, Espen A. F., Helbostad, Jorunn L., Chiari, Lorenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191085/ https://www.ncbi.nlm.nih.gov/pubmed/27973434 http://dx.doi.org/10.3390/s16122105 |
Ejemplares similares
-
Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification
por: Awais, Muhammad, et al.
Publicado: (2021) -
A Physical Activity Reference Data-Set Recorded from Older Adults Using Body-Worn Inertial Sensors and Video Technology—The ADAPT Study Data-Set
por: Bourke, Alan Kevin, et al.
Publicado: (2017) -
The FARSEEING real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls
por: Klenk, Jochen, et al.
Publicado: (2016) -
The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers
por: Ihlen, Espen A. F., et al.
Publicado: (2015) -
Identification of gait domains and key gait variables following hip fracture
por: Thingstad, Pernille, et al.
Publicado: (2015)