Cargando…
Adaptive Local Spatiotemporal Features from RGB-D Data for One-Shot Learning Gesture Recognition
Noise and constant empirical motion constraints affect the extraction of distinctive spatiotemporal features from one or a few samples per gesture class. To tackle these problems, an adaptive local spatiotemporal feature (ALSTF) using fused RGB-D data is proposed. First, motion regions of interest (...
Autores principales: | Lin, Jia, Ruan, Xiaogang, Yu, Naigong, Yang, Yee-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191150/ https://www.ncbi.nlm.nih.gov/pubmed/27999337 http://dx.doi.org/10.3390/s16122171 |
Ejemplares similares
-
3D Digital Model of Folk Dance Based on Few-Shot Learning and Gesture Recognition
por: Zhang, Ning
Publicado: (2022) -
Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots
por: Papanagiotou, Dimitris, et al.
Publicado: (2021) -
CNN Deep Learning with Wavelet Image Fusion of CCD RGB-IR and Depth-Grayscale Sensor Data for Hand Gesture Intention Recognition
por: Ding, Ing-Jr, et al.
Publicado: (2022) -
User-Independent EMG Gesture Recognition Method Based on Adaptive Learning
por: Zheng, Nan, et al.
Publicado: (2022) -
Gesture recognition
por: Coleman, Gilberto
Publicado: (2018)