Cargando…

Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we pres...

Descripción completa

Detalles Bibliográficos
Autores principales: Treutler, Hendrik, Neumann, Steffen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192443/
https://www.ncbi.nlm.nih.gov/pubmed/27775610
http://dx.doi.org/10.3390/metabo6040037
_version_ 1782487777629175808
author Treutler, Hendrik
Neumann, Steffen
author_facet Treutler, Hendrik
Neumann, Steffen
author_sort Treutler, Hendrik
collection PubMed
description Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in [Formula: see text] of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.
format Online
Article
Text
id pubmed-5192443
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-51924432017-01-03 Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data Treutler, Hendrik Neumann, Steffen Metabolites Article Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in [Formula: see text] of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0. MDPI 2016-10-20 /pmc/articles/PMC5192443/ /pubmed/27775610 http://dx.doi.org/10.3390/metabo6040037 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Treutler, Hendrik
Neumann, Steffen
Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title_full Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title_fullStr Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title_full_unstemmed Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title_short Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
title_sort prediction, detection, and validation of isotope clusters in mass spectrometry data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192443/
https://www.ncbi.nlm.nih.gov/pubmed/27775610
http://dx.doi.org/10.3390/metabo6040037
work_keys_str_mv AT treutlerhendrik predictiondetectionandvalidationofisotopeclustersinmassspectrometrydata
AT neumannsteffen predictiondetectionandvalidationofisotopeclustersinmassspectrometrydata