Cargando…
EPS—Then and Now
“Slime” played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192524/ https://www.ncbi.nlm.nih.gov/pubmed/27869702 http://dx.doi.org/10.3390/microorganisms4040041 |
Sumario: | “Slime” played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was inspired by “How bacteria stick” by Costerton et al. in 1978, and the matrix material was considered to be polysaccharides. Later, it turned out that proteins, nucleic acids and lipids were major other constituents of the extracellular polymeric substances (EPS), an acronym which was highly discussed. The role of the EPS matrix turns out to be fundamental for biofilms, in terms of keeping cells in proximity and allowing for extended interaction, resource capture, mechanical strength and other properties, which emerge from the life of biofilm organisms, including enhanced tolerance to antimicrobials and other stress. The EPS components are extremely complex and dynamic and fulfil many functional roles, turning biofilms into the most ubiquitous and successful form of life on Earth. |
---|