Cargando…
Evolution‐informed modeling improves outcome prediction for cancers
Despite wide applications of high‐throughput biotechnologies in cancer research, many biomarkers discovered by exploring large‐scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This problem is partly due to the overlooking of functional implicat...
Autores principales: | Liu, Li, Chang, Yung, Yang, Tao, Noren, David P, Long, Byron, Kornblau, Steven, Qutub, Amina, Ye, Jieping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192825/ https://www.ncbi.nlm.nih.gov/pubmed/28035236 http://dx.doi.org/10.1111/eva.12417 |
Ejemplares similares
-
Progeny Clustering: A Method to Identify Biological Phenotypes
por: Hu, Chenyue W., et al.
Publicado: (2015) -
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
por: Noren, David P., et al.
Publicado: (2016) -
Predicting internal cell fluxes at sub-optimal growth
por: Schultz, André, et al.
Publicado: (2015) -
Proteomic Profiling Identifies Distinct Protein Patterns in Acute Myelogenous Leukemia CD34+CD38- Stem-Like Cells
por: Kornblau, Steven M., et al.
Publicado: (2013) -
Mycoplasma contamination of leukemic cell lines alters protein expression determined by reverse phase protein arrays
por: Hoff, Fieke W., et al.
Publicado: (2018)