Cargando…
Limits to Causal Inference with State-Space Reconstruction for Infectious Disease
Infectious diseases are notorious for their complex dynamics, which make it difficult to fit models to test hypotheses. Methods based on state-space reconstruction have been proposed to infer causal interactions in noisy, nonlinear dynamical systems. These “model-free” methods are collectively known...
Autores principales: | Cobey, Sarah, Baskerville, Edward B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193453/ https://www.ncbi.nlm.nih.gov/pubmed/28030639 http://dx.doi.org/10.1371/journal.pone.0169050 |
Ejemplares similares
-
Trade-offs in antibody repertoires to complex antigens
por: Childs, Lauren M., et al.
Publicado: (2015) -
Context Modulates the Contribution of Time and Space in Causal Inference
por: Woods, Adam J., et al.
Publicado: (2012) -
Causal Inference Regarding Infectious Aetiology of Chronic Conditions: A Systematic Review
por: Orrskog, Sofia, et al.
Publicado: (2013) -
Towards Strong Inference in Research on Embodiment – Possibilities and Limitations of Causal Paradigms
por: Ostarek, Markus, et al.
Publicado: (2021) -
Causal Inference for Genetically Determined Levels of High-Density Lipoprotein Cholesterol and Risk of Infectious Disease
por: Trinder, Mark, et al.
Publicado: (2020)