Cargando…

Harbouring public good mutants within a pathogen population can increase both fitness and virulence

Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devasta...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindsay, Richard J, Kershaw, Michael J, Pawlowska, Bogna J, Talbot, Nicholas J, Gudelj, Ivana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193496/
https://www.ncbi.nlm.nih.gov/pubmed/28029337
http://dx.doi.org/10.7554/eLife.18678
Descripción
Sumario:Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devastating consequences for infected hosts. We deploy cooperation theory and a novel synthetic system involving the rice blast fungus Magnaporthe oryzae. In vivo infections of rice demonstrate that M. oryzae virulence is enhanced, quite paradoxically, when a public good mutant is present in a population of high-virulence pathogens. We reason that during infection, the fungus engages in multiple cooperative acts to exploit host resources. We establish a multi-trait cooperation model which suggests that the observed failure of the virulence reduction strategy is caused by the interference between different social traits. Multi-trait cooperative interactions are widespread, so we caution against the indiscriminant application of anti-virulence therapy as a disease-management strategy. DOI: http://dx.doi.org/10.7554/eLife.18678.001