Cargando…

Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor

The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hultqvist, Greta, Syvänen, Stina, Fang, Xiaotian T, Lannfelt, Lars, Sehlin, Dag
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5197066/
https://www.ncbi.nlm.nih.gov/pubmed/28042336
http://dx.doi.org/10.7150/thno.17155
_version_ 1782488617426354176
author Hultqvist, Greta
Syvänen, Stina
Fang, Xiaotian T
Lannfelt, Lars
Sehlin, Dag
author_facet Hultqvist, Greta
Syvänen, Stina
Fang, Xiaotian T
Lannfelt, Lars
Sehlin, Dag
author_sort Hultqvist, Greta
collection PubMed
description The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain.
format Online
Article
Text
id pubmed-5197066
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-51970662017-01-01 Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor Hultqvist, Greta Syvänen, Stina Fang, Xiaotian T Lannfelt, Lars Sehlin, Dag Theranostics Research Paper The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain. Ivyspring International Publisher 2017-01-01 /pmc/articles/PMC5197066/ /pubmed/28042336 http://dx.doi.org/10.7150/thno.17155 Text en © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
spellingShingle Research Paper
Hultqvist, Greta
Syvänen, Stina
Fang, Xiaotian T
Lannfelt, Lars
Sehlin, Dag
Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title_full Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title_fullStr Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title_full_unstemmed Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title_short Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor
title_sort bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5197066/
https://www.ncbi.nlm.nih.gov/pubmed/28042336
http://dx.doi.org/10.7150/thno.17155
work_keys_str_mv AT hultqvistgreta bivalentbrainshuttleincreasesantibodyuptakebymonovalentbindingtothetransferrinreceptor
AT syvanenstina bivalentbrainshuttleincreasesantibodyuptakebymonovalentbindingtothetransferrinreceptor
AT fangxiaotiant bivalentbrainshuttleincreasesantibodyuptakebymonovalentbindingtothetransferrinreceptor
AT lannfeltlars bivalentbrainshuttleincreasesantibodyuptakebymonovalentbindingtothetransferrinreceptor
AT sehlindag bivalentbrainshuttleincreasesantibodyuptakebymonovalentbindingtothetransferrinreceptor