Cargando…

Computational Modeling and Analysis of Microarray Data: New Horizons

High-throughput microarray technologies have long been a source of data for a wide range of biomedical investigations. Over the decades, variants have been developed and sophistication of measurements has improved, with generated data providing both valuable insight and considerable analytical chall...

Descripción completa

Detalles Bibliográficos
Autor principal: Ruskin, Heather J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5197945/
https://www.ncbi.nlm.nih.gov/pubmed/27775644
http://dx.doi.org/10.3390/microarrays5040026
Descripción
Sumario:High-throughput microarray technologies have long been a source of data for a wide range of biomedical investigations. Over the decades, variants have been developed and sophistication of measurements has improved, with generated data providing both valuable insight and considerable analytical challenge. The cost-effectiveness of microarrays, as well as their fundamental applicability, made them a first choice for much early genomic research and efforts to improve accessibility, quality and interpretation have continued unabated. In recent years, however, the emergence of new generations of sequencing methods and, importantly, reduction of costs, has seen a preferred shift in much genomic research to the use of sequence data, both less ‘noisy’ and, arguably, with species information more directly targeted and easily interpreted. Nevertheless, new microarray data are still being generated and, together with their considerable legacy, can offer a complementary perspective on biological systems and disease pathogenesis. The challenge now is to exploit novel methods for enhancing and combining these data with those generated by alternative high-throughput techniques, such as sequencing, to provide added value. Augmentation and integration of microarray data and the new horizons this opens up, provide the theme for the papers in this Special Issue.