Cargando…

Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications

In an attempt to develop Complementary and Alternative Medicine (CAM) for the treatment of diabetes and related complications, the antidiabetic potential of the mature unripe fruits of Coccinia grandis (CGF) was evaluated. Oxidative stress and glycation plays an important role in manifesting of diab...

Descripción completa

Detalles Bibliográficos
Autores principales: Meenatchi, Packirisamy, Purushothaman, Ayyakkanuu, Maneemegalai, Sivaprakasam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198829/
https://www.ncbi.nlm.nih.gov/pubmed/28053889
http://dx.doi.org/10.1016/j.jtcme.2016.01.002
Descripción
Sumario:In an attempt to develop Complementary and Alternative Medicine (CAM) for the treatment of diabetes and related complications, the antidiabetic potential of the mature unripe fruits of Coccinia grandis (CGF) was evaluated. Oxidative stress and glycation plays an important role in manifesting of diabetes and vascular complications. Agents with antioxidant and antiglycation properties may retard these pathological alterations. In this study, the edible plant Coccinia grandis was assessed for in vitro estimation of antioxidant and antiglycation potential and its insulinotrophic properties in RINm5F cells. Antioxidant activity was evaluated as DPPH (1,1-diphenyl-2-picrylhydrazyl), hydrogen peroxide and superoxide anion scavenging activities, whereas the protein glycation inhibitory potential was evaluated using in vitro albumin-fructose glycation model. Glycation inhibition was estimated by different biochemical parameters viz. fructosamine, protein carbonyl group and protein aggregation using thioflavin T fluorescence. C. grandis extract exerted a dose dependent radical scavenging activity and exhibited a significant antiglycation potential. The extract also showed a significant insulinotrophic property with 1.28 and 1.71-fold increase in insulin release when compared to control at 0.25 and 0.50 mg/mL, respectively. These data suggest the possible antidiabetic role of CGF extract, presumably by its antioxidant, antiglycation and insulin secretory effects. Present findings provide experimental evidence that the fruits of C. grandis have potential antidiabetic activity which might be used as a functional food and safe remedy for the treatment of diabetes and associated complications. This study also revealed that the plant can be a promising source for development of natural antiglycating agents and novel insulin secretagogues.