Cargando…
Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings
OBJECTIVES: Radiomics utilizes quantitative image features (QIFs) to characterize tumor phenotype. In practice, radiological images are obtained from different vendors’ equipment using various imaging acquisition settings. Our objective was to assess the inter-setting agreement of QIFs computed from...
Autores principales: | Lu, Lin, Ehmke, Ross C., Schwartz, Lawrence H., Zhao, Binsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5199063/ https://www.ncbi.nlm.nih.gov/pubmed/28033372 http://dx.doi.org/10.1371/journal.pone.0166550 |
Ejemplares similares
-
Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom
por: Lu, Lin, et al.
Publicado: (2019) -
Radiomics Prediction of EGFR Status in Lung Cancer—Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
por: Lu, Lin, et al.
Publicado: (2020) -
Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features
por: Kalpathy-Cramer, Jayashree, et al.
Publicado: (2016) -
Reproducibility of radiomics for deciphering tumor phenotype with imaging
por: Zhao, Binsheng, et al.
Publicado: (2016) -
Toward radiomics for assessment of response to systemic therapies in lung cancer
por: Sun, Shawn, et al.
Publicado: (2020)