Cargando…
Unusual Base-Pairing Interactions in Monomer–Template Complexes
[Image: see text] Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crys...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5200924/ https://www.ncbi.nlm.nih.gov/pubmed/28058281 http://dx.doi.org/10.1021/acscentsci.6b00278 |
_version_ | 1782489267011846144 |
---|---|
author | Zhang, Wen Tam, Chun Pong Wang, Jiawei Szostak, Jack W. |
author_facet | Zhang, Wen Tam, Chun Pong Wang, Jiawei Szostak, Jack W. |
author_sort | Zhang, Wen |
collection | PubMed |
description | [Image: see text] Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crystallographic studies of the binding of ribonucleotide monomers to RNA primer–template complexes, with the goal of improving our understanding of the mechanism of nonenzymatic RNA copying, and of catalysis by polymerases. To explore how activated ribonucleotides recognize and bind to RNA templates, we synthesized an unreactive phosphonate-linked pyrazole analogue of guanosine 5′-phosphoro-2-methylimidazolide (2-MeImpG), a highly activated nucleotide that has been used extensively to study nonenzymatic primer extension. We cocrystallized this analogue with structurally rigidified RNA primer–template complexes carrying single or multiple monomer binding sites, and obtained high-resolution X-ray structures of these complexes. In addition to Watson–Crick base pairing, we repeatedly observed noncanonical guanine:cytidine base pairs in our crystal structures. In most structures, the phosphate and leaving group moieties of the monomers were highly disordered, while in others the distance from O3′ of the primer to the phosphorus of the incoming monomer was too great to allow for reaction. We suggest that these effects significantly influence the rate and fidelity of nonenzymatic RNA replication, and that even primitive ribozyme polymerases could enhance RNA replication by enforcing Watson–Crick base pairing between monomers and primer–template complexes, and by bringing the reactive functional groups into closer proximity. |
format | Online Article Text |
id | pubmed-5200924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52009242017-01-05 Unusual Base-Pairing Interactions in Monomer–Template Complexes Zhang, Wen Tam, Chun Pong Wang, Jiawei Szostak, Jack W. ACS Cent Sci [Image: see text] Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crystallographic studies of the binding of ribonucleotide monomers to RNA primer–template complexes, with the goal of improving our understanding of the mechanism of nonenzymatic RNA copying, and of catalysis by polymerases. To explore how activated ribonucleotides recognize and bind to RNA templates, we synthesized an unreactive phosphonate-linked pyrazole analogue of guanosine 5′-phosphoro-2-methylimidazolide (2-MeImpG), a highly activated nucleotide that has been used extensively to study nonenzymatic primer extension. We cocrystallized this analogue with structurally rigidified RNA primer–template complexes carrying single or multiple monomer binding sites, and obtained high-resolution X-ray structures of these complexes. In addition to Watson–Crick base pairing, we repeatedly observed noncanonical guanine:cytidine base pairs in our crystal structures. In most structures, the phosphate and leaving group moieties of the monomers were highly disordered, while in others the distance from O3′ of the primer to the phosphorus of the incoming monomer was too great to allow for reaction. We suggest that these effects significantly influence the rate and fidelity of nonenzymatic RNA replication, and that even primitive ribozyme polymerases could enhance RNA replication by enforcing Watson–Crick base pairing between monomers and primer–template complexes, and by bringing the reactive functional groups into closer proximity. American Chemical Society 2016-11-02 2016-12-28 /pmc/articles/PMC5200924/ /pubmed/28058281 http://dx.doi.org/10.1021/acscentsci.6b00278 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Zhang, Wen Tam, Chun Pong Wang, Jiawei Szostak, Jack W. Unusual Base-Pairing Interactions in Monomer–Template Complexes |
title | Unusual Base-Pairing Interactions in Monomer–Template
Complexes |
title_full | Unusual Base-Pairing Interactions in Monomer–Template
Complexes |
title_fullStr | Unusual Base-Pairing Interactions in Monomer–Template
Complexes |
title_full_unstemmed | Unusual Base-Pairing Interactions in Monomer–Template
Complexes |
title_short | Unusual Base-Pairing Interactions in Monomer–Template
Complexes |
title_sort | unusual base-pairing interactions in monomer–template
complexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5200924/ https://www.ncbi.nlm.nih.gov/pubmed/28058281 http://dx.doi.org/10.1021/acscentsci.6b00278 |
work_keys_str_mv | AT zhangwen unusualbasepairinginteractionsinmonomertemplatecomplexes AT tamchunpong unusualbasepairinginteractionsinmonomertemplatecomplexes AT wangjiawei unusualbasepairinginteractionsinmonomertemplatecomplexes AT szostakjackw unusualbasepairinginteractionsinmonomertemplatecomplexes |