Cargando…

A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism

[Image: see text] The enzymatic cleavage of β-1,4-mannans is achieved by endo-β-1,4-mannanases, enzymes involved in germination of seeds and microbial hemicellulose degradation, and which have increasing industrial and consumer product applications. β-Mannanases occur in a range of families of the C...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yi, Petricevic, Marija, John, Alan, Raich, Lluís, Jenkins, Huw, Portela De Souza, Leticia, Cuskin, Fiona, Gilbert, Harry J., Rovira, Carme, Goddard-Borger, Ethan D., Williams, Spencer J., Davies, Gideon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5200933/
https://www.ncbi.nlm.nih.gov/pubmed/28058278
http://dx.doi.org/10.1021/acscentsci.6b00232
Descripción
Sumario:[Image: see text] The enzymatic cleavage of β-1,4-mannans is achieved by endo-β-1,4-mannanases, enzymes involved in germination of seeds and microbial hemicellulose degradation, and which have increasing industrial and consumer product applications. β-Mannanases occur in a range of families of the CAZy sequence-based glycoside hydrolase (GH) classification scheme including families 5, 26, and 113. In this work we reveal that β-mannanases of the newly described GH family 134 differ from other mannanase families in both their mechanism and tertiary structure. A representative GH family 134 endo-β-1,4-mannanase from a Streptomyces sp. displays a fold closely related to that of hen egg white lysozyme but acts with inversion of stereochemistry. A Michaelis complex with mannopentaose, and a product complex with mannotriose, reveal ligands with pyranose rings distorted in an unusual inverted chair conformation. Ab initio quantum mechanics/molecular mechanics metadynamics quantified the energetically accessible ring conformations and provided evidence in support of a (1)C(4) → (3)H(4)(‡) → (3)S(1) conformational itinerary along the reaction coordinate. This work, in concert with that on GH family 124 cellulases, reveals how the lysozyme fold can be co-opted to catalyze the hydrolysis of different polysaccharides in a mechanistically distinct manner.