Cargando…

Rational design of a water-soluble, lipid-compatible fluorescent probe for Cu(i) with sub-part-per-trillion sensitivity

Fluorescence probes represent an attractive solution for the detection of the biologically important Cu(i) cation; however, achieving a bright, high-contrast response has been a challenging goal. Concluding from previous studies on pyrazoline-based fluorescent Cu(i) probes, the maximum attainable fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgan, M. T., McCallum, A. M., Fahrni, C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201193/
https://www.ncbi.nlm.nih.gov/pubmed/28042469
http://dx.doi.org/10.1039/c5sc03643g
Descripción
Sumario:Fluorescence probes represent an attractive solution for the detection of the biologically important Cu(i) cation; however, achieving a bright, high-contrast response has been a challenging goal. Concluding from previous studies on pyrazoline-based fluorescent Cu(i) probes, the maximum attainable fluorescence contrast and quantum yield were limited due to several non-radiative deactivation mechanisms, including ternary complex formation, excited state protonation, and colloidal aggregation in aqueous solution. Through knowledge-driven optimization of the ligand and fluorophore architectures, we overcame these limitations in the design of CTAP-3, a Cu(i)-selective fluorescent probe offering a 180-fold fluorescence enhancement, 41% quantum yield, and a limit of detection in the sub-part-per-trillion concentration range. In contrast to lipophilic Cu(i)-probes, CTAP-3 does not aggregate and interacts only weakly with lipid bilayers, thus maintaining a high contrast ratio even in the presence of liposomes.