Cargando…
Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery sam...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201242/ https://www.ncbi.nlm.nih.gov/pubmed/28036406 http://dx.doi.org/10.1371/journal.pgen.1006493 |
_version_ | 1782489307746926592 |
---|---|
author | Shi, Jianxin Park, Ju-Hyun Duan, Jubao Berndt, Sonja T. Moy, Winton Yu, Kai Song, Lei Wheeler, William Hua, Xing Silverman, Debra Garcia-Closas, Montserrat Hsiung, Chao Agnes Figueroa, Jonine D. Cortessis, Victoria K. Malats, Núria Karagas, Margaret R. Vineis, Paolo Chang, I-Shou Lin, Dongxin Zhou, Baosen Seow, Adeline Matsuo, Keitaro Hong, Yun-Chul Caporaso, Neil E. Wolpin, Brian Jacobs, Eric Petersen, Gloria M. Klein, Alison P. Li, Donghui Risch, Harvey Sanders, Alan R. Hsu, Li Schoen, Robert E. Brenner, Hermann Stolzenberg-Solomon, Rachael Gejman, Pablo Lan, Qing Rothman, Nathaniel Amundadottir, Laufey T. Landi, Maria Teresa Levinson, Douglas F. Chanock, Stephen J. Chatterjee, Nilanjan |
author_facet | Shi, Jianxin Park, Ju-Hyun Duan, Jubao Berndt, Sonja T. Moy, Winton Yu, Kai Song, Lei Wheeler, William Hua, Xing Silverman, Debra Garcia-Closas, Montserrat Hsiung, Chao Agnes Figueroa, Jonine D. Cortessis, Victoria K. Malats, Núria Karagas, Margaret R. Vineis, Paolo Chang, I-Shou Lin, Dongxin Zhou, Baosen Seow, Adeline Matsuo, Keitaro Hong, Yun-Chul Caporaso, Neil E. Wolpin, Brian Jacobs, Eric Petersen, Gloria M. Klein, Alison P. Li, Donghui Risch, Harvey Sanders, Alan R. Hsu, Li Schoen, Robert E. Brenner, Hermann Stolzenberg-Solomon, Rachael Gejman, Pablo Lan, Qing Rothman, Nathaniel Amundadottir, Laufey T. Landi, Maria Teresa Levinson, Douglas F. Chanock, Stephen J. Chatterjee, Nilanjan |
author_sort | Shi, Jianxin |
collection | PubMed |
description | Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R(2)) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R(2) from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R(2) to 3.53% (P = 2×10(−5)). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure. |
format | Online Article Text |
id | pubmed-5201242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52012422017-01-19 Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data Shi, Jianxin Park, Ju-Hyun Duan, Jubao Berndt, Sonja T. Moy, Winton Yu, Kai Song, Lei Wheeler, William Hua, Xing Silverman, Debra Garcia-Closas, Montserrat Hsiung, Chao Agnes Figueroa, Jonine D. Cortessis, Victoria K. Malats, Núria Karagas, Margaret R. Vineis, Paolo Chang, I-Shou Lin, Dongxin Zhou, Baosen Seow, Adeline Matsuo, Keitaro Hong, Yun-Chul Caporaso, Neil E. Wolpin, Brian Jacobs, Eric Petersen, Gloria M. Klein, Alison P. Li, Donghui Risch, Harvey Sanders, Alan R. Hsu, Li Schoen, Robert E. Brenner, Hermann Stolzenberg-Solomon, Rachael Gejman, Pablo Lan, Qing Rothman, Nathaniel Amundadottir, Laufey T. Landi, Maria Teresa Levinson, Douglas F. Chanock, Stephen J. Chatterjee, Nilanjan PLoS Genet Research Article Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R(2)) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R(2) from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R(2) to 3.53% (P = 2×10(−5)). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure. Public Library of Science 2016-12-30 /pmc/articles/PMC5201242/ /pubmed/28036406 http://dx.doi.org/10.1371/journal.pgen.1006493 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Shi, Jianxin Park, Ju-Hyun Duan, Jubao Berndt, Sonja T. Moy, Winton Yu, Kai Song, Lei Wheeler, William Hua, Xing Silverman, Debra Garcia-Closas, Montserrat Hsiung, Chao Agnes Figueroa, Jonine D. Cortessis, Victoria K. Malats, Núria Karagas, Margaret R. Vineis, Paolo Chang, I-Shou Lin, Dongxin Zhou, Baosen Seow, Adeline Matsuo, Keitaro Hong, Yun-Chul Caporaso, Neil E. Wolpin, Brian Jacobs, Eric Petersen, Gloria M. Klein, Alison P. Li, Donghui Risch, Harvey Sanders, Alan R. Hsu, Li Schoen, Robert E. Brenner, Hermann Stolzenberg-Solomon, Rachael Gejman, Pablo Lan, Qing Rothman, Nathaniel Amundadottir, Laufey T. Landi, Maria Teresa Levinson, Douglas F. Chanock, Stephen J. Chatterjee, Nilanjan Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title | Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title_full | Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title_fullStr | Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title_full_unstemmed | Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title_short | Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data |
title_sort | winner's curse correction and variable thresholding improve performance of polygenic risk modeling based on genome-wide association study summary-level data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201242/ https://www.ncbi.nlm.nih.gov/pubmed/28036406 http://dx.doi.org/10.1371/journal.pgen.1006493 |
work_keys_str_mv | AT shijianxin winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT parkjuhyun winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT duanjubao winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT berndtsonjat winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT moywinton winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT yukai winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT songlei winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT wheelerwilliam winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT huaxing winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT silvermandebra winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT garciaclosasmontserrat winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT hsiungchaoagnes winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT figueroajonined winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT cortessisvictoriak winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT malatsnuria winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT karagasmargaretr winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT vineispaolo winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT changishou winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT lindongxin winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT zhoubaosen winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT seowadeline winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT matsuokeitaro winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT hongyunchul winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT caporasoneile winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT wolpinbrian winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT jacobseric winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT petersengloriam winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT kleinalisonp winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT lidonghui winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT rischharvey winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT sandersalanr winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT hsuli winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT schoenroberte winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT brennerhermann winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT stolzenbergsolomonrachael winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT gejmanpablo winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT lanqing winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT rothmannathaniel winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT amundadottirlaufeyt winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT landimariateresa winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT levinsondouglasf winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT chanockstephenj winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata AT chatterjeenilanjan winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata |