Cargando…

Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data

Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery sam...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Jianxin, Park, Ju-Hyun, Duan, Jubao, Berndt, Sonja T., Moy, Winton, Yu, Kai, Song, Lei, Wheeler, William, Hua, Xing, Silverman, Debra, Garcia-Closas, Montserrat, Hsiung, Chao Agnes, Figueroa, Jonine D., Cortessis, Victoria K., Malats, Núria, Karagas, Margaret R., Vineis, Paolo, Chang, I-Shou, Lin, Dongxin, Zhou, Baosen, Seow, Adeline, Matsuo, Keitaro, Hong, Yun-Chul, Caporaso, Neil E., Wolpin, Brian, Jacobs, Eric, Petersen, Gloria M., Klein, Alison P., Li, Donghui, Risch, Harvey, Sanders, Alan R., Hsu, Li, Schoen, Robert E., Brenner, Hermann, Stolzenberg-Solomon, Rachael, Gejman, Pablo, Lan, Qing, Rothman, Nathaniel, Amundadottir, Laufey T., Landi, Maria Teresa, Levinson, Douglas F., Chanock, Stephen J., Chatterjee, Nilanjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201242/
https://www.ncbi.nlm.nih.gov/pubmed/28036406
http://dx.doi.org/10.1371/journal.pgen.1006493
_version_ 1782489307746926592
author Shi, Jianxin
Park, Ju-Hyun
Duan, Jubao
Berndt, Sonja T.
Moy, Winton
Yu, Kai
Song, Lei
Wheeler, William
Hua, Xing
Silverman, Debra
Garcia-Closas, Montserrat
Hsiung, Chao Agnes
Figueroa, Jonine D.
Cortessis, Victoria K.
Malats, Núria
Karagas, Margaret R.
Vineis, Paolo
Chang, I-Shou
Lin, Dongxin
Zhou, Baosen
Seow, Adeline
Matsuo, Keitaro
Hong, Yun-Chul
Caporaso, Neil E.
Wolpin, Brian
Jacobs, Eric
Petersen, Gloria M.
Klein, Alison P.
Li, Donghui
Risch, Harvey
Sanders, Alan R.
Hsu, Li
Schoen, Robert E.
Brenner, Hermann
Stolzenberg-Solomon, Rachael
Gejman, Pablo
Lan, Qing
Rothman, Nathaniel
Amundadottir, Laufey T.
Landi, Maria Teresa
Levinson, Douglas F.
Chanock, Stephen J.
Chatterjee, Nilanjan
author_facet Shi, Jianxin
Park, Ju-Hyun
Duan, Jubao
Berndt, Sonja T.
Moy, Winton
Yu, Kai
Song, Lei
Wheeler, William
Hua, Xing
Silverman, Debra
Garcia-Closas, Montserrat
Hsiung, Chao Agnes
Figueroa, Jonine D.
Cortessis, Victoria K.
Malats, Núria
Karagas, Margaret R.
Vineis, Paolo
Chang, I-Shou
Lin, Dongxin
Zhou, Baosen
Seow, Adeline
Matsuo, Keitaro
Hong, Yun-Chul
Caporaso, Neil E.
Wolpin, Brian
Jacobs, Eric
Petersen, Gloria M.
Klein, Alison P.
Li, Donghui
Risch, Harvey
Sanders, Alan R.
Hsu, Li
Schoen, Robert E.
Brenner, Hermann
Stolzenberg-Solomon, Rachael
Gejman, Pablo
Lan, Qing
Rothman, Nathaniel
Amundadottir, Laufey T.
Landi, Maria Teresa
Levinson, Douglas F.
Chanock, Stephen J.
Chatterjee, Nilanjan
author_sort Shi, Jianxin
collection PubMed
description Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R(2)) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R(2) from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R(2) to 3.53% (P = 2×10(−5)). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure.
format Online
Article
Text
id pubmed-5201242
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-52012422017-01-19 Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data Shi, Jianxin Park, Ju-Hyun Duan, Jubao Berndt, Sonja T. Moy, Winton Yu, Kai Song, Lei Wheeler, William Hua, Xing Silverman, Debra Garcia-Closas, Montserrat Hsiung, Chao Agnes Figueroa, Jonine D. Cortessis, Victoria K. Malats, Núria Karagas, Margaret R. Vineis, Paolo Chang, I-Shou Lin, Dongxin Zhou, Baosen Seow, Adeline Matsuo, Keitaro Hong, Yun-Chul Caporaso, Neil E. Wolpin, Brian Jacobs, Eric Petersen, Gloria M. Klein, Alison P. Li, Donghui Risch, Harvey Sanders, Alan R. Hsu, Li Schoen, Robert E. Brenner, Hermann Stolzenberg-Solomon, Rachael Gejman, Pablo Lan, Qing Rothman, Nathaniel Amundadottir, Laufey T. Landi, Maria Teresa Levinson, Douglas F. Chanock, Stephen J. Chatterjee, Nilanjan PLoS Genet Research Article Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R(2)) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R(2) from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R(2) to 3.53% (P = 2×10(−5)). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure. Public Library of Science 2016-12-30 /pmc/articles/PMC5201242/ /pubmed/28036406 http://dx.doi.org/10.1371/journal.pgen.1006493 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Shi, Jianxin
Park, Ju-Hyun
Duan, Jubao
Berndt, Sonja T.
Moy, Winton
Yu, Kai
Song, Lei
Wheeler, William
Hua, Xing
Silverman, Debra
Garcia-Closas, Montserrat
Hsiung, Chao Agnes
Figueroa, Jonine D.
Cortessis, Victoria K.
Malats, Núria
Karagas, Margaret R.
Vineis, Paolo
Chang, I-Shou
Lin, Dongxin
Zhou, Baosen
Seow, Adeline
Matsuo, Keitaro
Hong, Yun-Chul
Caporaso, Neil E.
Wolpin, Brian
Jacobs, Eric
Petersen, Gloria M.
Klein, Alison P.
Li, Donghui
Risch, Harvey
Sanders, Alan R.
Hsu, Li
Schoen, Robert E.
Brenner, Hermann
Stolzenberg-Solomon, Rachael
Gejman, Pablo
Lan, Qing
Rothman, Nathaniel
Amundadottir, Laufey T.
Landi, Maria Teresa
Levinson, Douglas F.
Chanock, Stephen J.
Chatterjee, Nilanjan
Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title_full Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title_fullStr Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title_full_unstemmed Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title_short Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data
title_sort winner's curse correction and variable thresholding improve performance of polygenic risk modeling based on genome-wide association study summary-level data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201242/
https://www.ncbi.nlm.nih.gov/pubmed/28036406
http://dx.doi.org/10.1371/journal.pgen.1006493
work_keys_str_mv AT shijianxin winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT parkjuhyun winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT duanjubao winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT berndtsonjat winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT moywinton winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT yukai winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT songlei winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT wheelerwilliam winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT huaxing winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT silvermandebra winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT garciaclosasmontserrat winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT hsiungchaoagnes winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT figueroajonined winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT cortessisvictoriak winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT malatsnuria winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT karagasmargaretr winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT vineispaolo winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT changishou winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT lindongxin winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT zhoubaosen winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT seowadeline winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT matsuokeitaro winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT hongyunchul winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT caporasoneile winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT wolpinbrian winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT jacobseric winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT petersengloriam winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT kleinalisonp winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT lidonghui winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT rischharvey winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT sandersalanr winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT hsuli winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT schoenroberte winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT brennerhermann winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT stolzenbergsolomonrachael winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT gejmanpablo winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT lanqing winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT rothmannathaniel winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT amundadottirlaufeyt winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT landimariateresa winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT levinsondouglasf winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT chanockstephenj winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata
AT chatterjeenilanjan winnerscursecorrectionandvariablethresholdingimproveperformanceofpolygenicriskmodelingbasedongenomewideassociationstudysummaryleveldata