Cargando…

Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

[Image: see text] Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and...

Descripción completa

Detalles Bibliográficos
Autores principales: Fritzsche, Joachim, Albinsson, David, Fritzsche, Michael, Antosiewicz, Tomasz J., Westerlund, Fredrik, Langhammer, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201310/
https://www.ncbi.nlm.nih.gov/pubmed/27960495
http://dx.doi.org/10.1021/acs.nanolett.6b04124
_version_ 1782489321821962240
author Fritzsche, Joachim
Albinsson, David
Fritzsche, Michael
Antosiewicz, Tomasz J.
Westerlund, Fredrik
Langhammer, Christoph
author_facet Fritzsche, Joachim
Albinsson, David
Fritzsche, Michael
Antosiewicz, Tomasz J.
Westerlund, Fredrik
Langhammer, Christoph
author_sort Fritzsche, Joachim
collection PubMed
description [Image: see text] Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.
format Online
Article
Text
id pubmed-5201310
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-52013102017-01-03 Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels Fritzsche, Joachim Albinsson, David Fritzsche, Michael Antosiewicz, Tomasz J. Westerlund, Fredrik Langhammer, Christoph Nano Lett [Image: see text] Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement. American Chemical Society 2016-11-15 2016-12-14 /pmc/articles/PMC5201310/ /pubmed/27960495 http://dx.doi.org/10.1021/acs.nanolett.6b04124 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Fritzsche, Joachim
Albinsson, David
Fritzsche, Michael
Antosiewicz, Tomasz J.
Westerlund, Fredrik
Langhammer, Christoph
Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title_full Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title_fullStr Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title_full_unstemmed Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title_short Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels
title_sort single particle nanoplasmonic sensing in individual nanofluidic channels
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201310/
https://www.ncbi.nlm.nih.gov/pubmed/27960495
http://dx.doi.org/10.1021/acs.nanolett.6b04124
work_keys_str_mv AT fritzschejoachim singleparticlenanoplasmonicsensinginindividualnanofluidicchannels
AT albinssondavid singleparticlenanoplasmonicsensinginindividualnanofluidicchannels
AT fritzschemichael singleparticlenanoplasmonicsensinginindividualnanofluidicchannels
AT antosiewicztomaszj singleparticlenanoplasmonicsensinginindividualnanofluidicchannels
AT westerlundfredrik singleparticlenanoplasmonicsensinginindividualnanofluidicchannels
AT langhammerchristoph singleparticlenanoplasmonicsensinginindividualnanofluidicchannels