Cargando…
Selective Landscapes in newt Immune Genes Inferred from Patterns of Nucleotide Variation
Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may di...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203778/ https://www.ncbi.nlm.nih.gov/pubmed/27702815 http://dx.doi.org/10.1093/gbe/evw236 |
Sumario: | Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may differ between species, large-scale population genomic studies are useful in detecting functionally important immune genes and comparing selective landscapes between taxa. Such studies are of particular interest in amphibians, a group threatened worldwide by emerging infectious diseases. Here, we present an analysis of polymorphism and divergence of 634 immune genes in two lineages of Lissotriton newts: L. montandoni and L. vulgaris graecus. Variation in newt immune genes has been shaped predominantly by widespread purifying selection and strong evolutionary constraint, implying long-term importance of these genes for functioning of the immune system. The two evolutionary lineages differ in the overall strength of purifying selection which can partially be explained by demographic history but may also signal differences in long-term pathogen pressure. The prevalent constraint notwithstanding, 23 putative targets of positive selection and 11 putative targets of balancing selection were identified. The latter were detected by composite tests involving the demographic model and further validated in independent population samples. Putative targets of balancing selection encode proteins which may interact closely with pathogens but include also regulators of immune response. The identified candidates will be useful for testing whether genes affected by balancing selection are more prone to interspecific introgression than other genes in the genome. |
---|