Cargando…

Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization

INTRODUCTION: The majority of drugs obtained through synthesis and development show poor aqueous solubility and dissolution velocity, resulting in reduced bioavailability of drugs. Most of these problems arise from formulation-related performance issues, and an efficient way to overcome these obstac...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanthamneni, Naveen, Valiveti, Satyanarayana, Patel, Mita, Xia, Heather, Tseng, Yin-Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204253/
https://www.ncbi.nlm.nih.gov/pubmed/28123991
http://dx.doi.org/10.4103/2230-973X.195931
Descripción
Sumario:INTRODUCTION: The majority of drugs obtained through synthesis and development show poor aqueous solubility and dissolution velocity, resulting in reduced bioavailability of drugs. Most of these problems arise from formulation-related performance issues, and an efficient way to overcome these obstacles and to increase dissolution velocity is to reduce the particle size of drug substances to form drug nanosuspensions. MATERIALS AND METHODS: Danazol nanosuspensions were prepared by wet milling (WM) and high-pressure homogenization (HPH) methods. The nanosuspensions obtained using these fabrication methods were analyzed for their particle size, surface charge, and the crystallinity of the product was assessed by X-ray diffraction (XRD) and differential scanning calorimetry techniques. To determine in vitro and in vivo performances of the prepared nanosuspensions, dissolution velocity, and bioavailability studies were performed. RESULTS: Particle size and zeta potential analysis showed the formation of nanosized particles with a negative charge on the surface. XRD depicted the nanocrystalline nature of danazol with low diffraction intensities. With increased surface area and saturation solubility, the nanosuspensions showed enhanced dissolution velocity and oral bioavailability in rats when compared to the bulk danazol suspension. CONCLUSIONS: The results suggest that the preparation of nanosuspensions by WM or HPH is a promising approach to formulate new drugs or to reformulate existing drugs with poorly water-soluble properties.