Cargando…
The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding
Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206445/ https://www.ncbi.nlm.nih.gov/pubmed/28097123 http://dx.doi.org/10.1155/2016/5078796 |
Sumario: | Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding. |
---|