Cargando…

Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activa...

Descripción completa

Detalles Bibliográficos
Autores principales: Perdios, Louis, Lowe, Alan R., Saladino, Giorgio, Bunney, Tom D., Thiyagarajan, Nethaji, Alexandrov, Yuriy, Dunsby, Christopher, French, Paul M. W., Chin, Jason W., Gervasio, Francesco Luigi, Tate, Edward W., Katan, Matilda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206623/
https://www.ncbi.nlm.nih.gov/pubmed/28045057
http://dx.doi.org/10.1038/srep39841
Descripción
Sumario:Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.