Cargando…
Building a genetic risk model for bipolar disorder from genome-wide association data with random forest algorithm
A genetic risk score could be beneficial in assisting clinical diagnosis for complex diseases with high heritability. With large-scale genome-wide association (GWA) data, the current study constructed a genetic risk model with a machine learning approach for bipolar disorder (BPD). The GWA dataset o...
Autores principales: | Chuang, Li-Chung, Kuo, Po-Hsiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206749/ https://www.ncbi.nlm.nih.gov/pubmed/28045094 http://dx.doi.org/10.1038/srep39943 |
Ejemplares similares
-
Incorporating Information of microRNAs into Pathway Analysis in a Genome-Wide Association Study of Bipolar Disorder
por: Shih, Wei-Liang, et al.
Publicado: (2012) -
Pathway Analysis Using Information from Allele-Specific Gene Methylation in Genome-Wide Association Studies for Bipolar Disorder
por: Chuang, Li-Chung, et al.
Publicado: (2013) -
Genetic Pathways and Functional Subnetworks for the Complex Nature of Bipolar Disorder in Genome-Wide Association Study
por: Kuo, Chan-Yen, et al.
Publicado: (2021) -
Identification of Susceptible Loci and Enriched Pathways for Bipolar II Disorder Using Genome-Wide Association Studies
por: Kao, Chung-Feng, et al.
Publicado: (2016) -
Identifying Potential Regions of Copy Number Variation for Bipolar Disorder
por: Chen, Yi-Hsuan, et al.
Publicado: (2014)