Cargando…

Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation

Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying ty...

Descripción completa

Detalles Bibliográficos
Autores principales: Valiente, Esmeralda, Bouché, Laura, Hitchen, Paul, Faulds-Pain, Alexandra, Songane, Mario, Dawson, Lisa F., Donahue, Elizabeth, Stabler, Richard A., Panico, Maria, Morris, Howard R., Bajaj-Elliott, Mona, Logan, Susan M., Dell, Anne, Wren, Brendan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207246/
https://www.ncbi.nlm.nih.gov/pubmed/27703012
http://dx.doi.org/10.1074/jbc.M116.749523
_version_ 1782490341712068608
author Valiente, Esmeralda
Bouché, Laura
Hitchen, Paul
Faulds-Pain, Alexandra
Songane, Mario
Dawson, Lisa F.
Donahue, Elizabeth
Stabler, Richard A.
Panico, Maria
Morris, Howard R.
Bajaj-Elliott, Mona
Logan, Susan M.
Dell, Anne
Wren, Brendan W.
author_facet Valiente, Esmeralda
Bouché, Laura
Hitchen, Paul
Faulds-Pain, Alexandra
Songane, Mario
Dawson, Lisa F.
Donahue, Elizabeth
Stabler, Richard A.
Panico, Maria
Morris, Howard R.
Bajaj-Elliott, Mona
Logan, Susan M.
Dell, Anne
Wren, Brendan W.
author_sort Valiente, Esmeralda
collection PubMed
description Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.
format Online
Article
Text
id pubmed-5207246
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-52072462017-01-04 Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation Valiente, Esmeralda Bouché, Laura Hitchen, Paul Faulds-Pain, Alexandra Songane, Mario Dawson, Lisa F. Donahue, Elizabeth Stabler, Richard A. Panico, Maria Morris, Howard R. Bajaj-Elliott, Mona Logan, Susan M. Dell, Anne Wren, Brendan W. J Biol Chem Microbiology Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains. American Society for Biochemistry and Molecular Biology 2016-12-02 2016-10-04 /pmc/articles/PMC5207246/ /pubmed/27703012 http://dx.doi.org/10.1074/jbc.M116.749523 Text en © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version free via Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Microbiology
Valiente, Esmeralda
Bouché, Laura
Hitchen, Paul
Faulds-Pain, Alexandra
Songane, Mario
Dawson, Lisa F.
Donahue, Elizabeth
Stabler, Richard A.
Panico, Maria
Morris, Howard R.
Bajaj-Elliott, Mona
Logan, Susan M.
Dell, Anne
Wren, Brendan W.
Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title_full Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title_fullStr Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title_full_unstemmed Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title_short Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation
title_sort role of glycosyltransferases modifying type b flagellin of emerging hypervirulent clostridium difficile lineages and their impact on motility and biofilm formation
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207246/
https://www.ncbi.nlm.nih.gov/pubmed/27703012
http://dx.doi.org/10.1074/jbc.M116.749523
work_keys_str_mv AT valienteesmeralda roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT bouchelaura roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT hitchenpaul roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT fauldspainalexandra roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT songanemario roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT dawsonlisaf roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT donahueelizabeth roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT stablerricharda roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT panicomaria roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT morrishowardr roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT bajajelliottmona roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT logansusanm roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT dellanne roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation
AT wrenbrendanw roleofglycosyltransferasesmodifyingtypebflagellinofemerginghypervirulentclostridiumdifficilelineagesandtheirimpactonmotilityandbiofilmformation