Cargando…
Iterative class discovery and feature selection using Minimal Spanning Trees
BACKGROUND: Clustering is one of the most commonly used methods for discovering hidden structure in microarray gene expression data. Most current methods for clustering samples are based on distance metrics utilizing all genes. This has the effect of obscuring clustering in samples that may be evide...
Autores principales: | Varma, Sudhir, Simon, Richard |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC520744/ https://www.ncbi.nlm.nih.gov/pubmed/15355552 http://dx.doi.org/10.1186/1471-2105-5-126 |
Ejemplares similares
-
Outlier detection using iterative adaptive mini-minimum spanning tree generation with applications on medical data
por: Li, Jia, et al.
Publicado: (2023) -
On the Number of Spanning Trees of Graphs
por: Bozkurt, Ş. Burcu, et al.
Publicado: (2014) -
Degree sums and dense spanning trees
por: Li, Tao, et al.
Publicado: (2017) -
Spanning Trees of Lattices Embedded on the Klein Bottle
por: Lu, Fuliang
Publicado: (2014) -
Minimum spanning tree analysis of the human connectome
por: van Dellen, Edwin, et al.
Publicado: (2018)