Cargando…
Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy
[Image: see text] Circular dichroism (CD) induced at exciton transitions by chiral ligands attached to single component and core/shell colloidal quantum dots (QDs) was used to study the interactions between QDs and their capping ligands. Analysis of the CD line shapes of CdSe and CdS QDs capped with...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207631/ https://www.ncbi.nlm.nih.gov/pubmed/27960517 http://dx.doi.org/10.1021/acs.nanolett.6b03143 |
_version_ | 1782490401801764864 |
---|---|
author | Ben-Moshe, Assaf Teitelboim, Ayelet Oron, Dan Markovich, Gil |
author_facet | Ben-Moshe, Assaf Teitelboim, Ayelet Oron, Dan Markovich, Gil |
author_sort | Ben-Moshe, Assaf |
collection | PubMed |
description | [Image: see text] Circular dichroism (CD) induced at exciton transitions by chiral ligands attached to single component and core/shell colloidal quantum dots (QDs) was used to study the interactions between QDs and their capping ligands. Analysis of the CD line shapes of CdSe and CdS QDs capped with l-cysteine reveals that all of the features in the complex spectra can be assigned to the different excitonic transitions. It is shown that each transition is accompanied by a derivative line shape in the CD response, indicating that the chiral ligand can split the exciton level into two new sublevels, with opposite angular momentum, even in the absence of an external magnetic field. The role of electrons and holes in this effect could be separated by experiments on various types of core/shell QDs, and it was concluded that the induced CD is likely related to interactions of the highest occupied molecular orbitals of the ligands with the holes. Hence, CD was useful for the analysis of hole level–ligand interactions in quantum semiconductor heterostructures, with promising outlook toward better general understanding the properties of the surface of such systems. |
format | Online Article Text |
id | pubmed-5207631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52076312017-01-04 Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy Ben-Moshe, Assaf Teitelboim, Ayelet Oron, Dan Markovich, Gil Nano Lett [Image: see text] Circular dichroism (CD) induced at exciton transitions by chiral ligands attached to single component and core/shell colloidal quantum dots (QDs) was used to study the interactions between QDs and their capping ligands. Analysis of the CD line shapes of CdSe and CdS QDs capped with l-cysteine reveals that all of the features in the complex spectra can be assigned to the different excitonic transitions. It is shown that each transition is accompanied by a derivative line shape in the CD response, indicating that the chiral ligand can split the exciton level into two new sublevels, with opposite angular momentum, even in the absence of an external magnetic field. The role of electrons and holes in this effect could be separated by experiments on various types of core/shell QDs, and it was concluded that the induced CD is likely related to interactions of the highest occupied molecular orbitals of the ligands with the holes. Hence, CD was useful for the analysis of hole level–ligand interactions in quantum semiconductor heterostructures, with promising outlook toward better general understanding the properties of the surface of such systems. American Chemical Society 2016-11-23 2016-12-14 /pmc/articles/PMC5207631/ /pubmed/27960517 http://dx.doi.org/10.1021/acs.nanolett.6b03143 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ben-Moshe, Assaf Teitelboim, Ayelet Oron, Dan Markovich, Gil Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy |
title | Probing the Interaction of Quantum Dots with Chiral
Capping Molecules Using Circular Dichroism Spectroscopy |
title_full | Probing the Interaction of Quantum Dots with Chiral
Capping Molecules Using Circular Dichroism Spectroscopy |
title_fullStr | Probing the Interaction of Quantum Dots with Chiral
Capping Molecules Using Circular Dichroism Spectroscopy |
title_full_unstemmed | Probing the Interaction of Quantum Dots with Chiral
Capping Molecules Using Circular Dichroism Spectroscopy |
title_short | Probing the Interaction of Quantum Dots with Chiral
Capping Molecules Using Circular Dichroism Spectroscopy |
title_sort | probing the interaction of quantum dots with chiral
capping molecules using circular dichroism spectroscopy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207631/ https://www.ncbi.nlm.nih.gov/pubmed/27960517 http://dx.doi.org/10.1021/acs.nanolett.6b03143 |
work_keys_str_mv | AT benmosheassaf probingtheinteractionofquantumdotswithchiralcappingmoleculesusingcirculardichroismspectroscopy AT teitelboimayelet probingtheinteractionofquantumdotswithchiralcappingmoleculesusingcirculardichroismspectroscopy AT orondan probingtheinteractionofquantumdotswithchiralcappingmoleculesusingcirculardichroismspectroscopy AT markovichgil probingtheinteractionofquantumdotswithchiralcappingmoleculesusingcirculardichroismspectroscopy |