Cargando…
High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time
Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequenci...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207663/ https://www.ncbi.nlm.nih.gov/pubmed/28045987 http://dx.doi.org/10.1371/journal.pone.0168910 |
_version_ | 1782490408155086848 |
---|---|
author | Jamann, Tiffany M. Sood, Shilpa Wisser, Randall J. Holland, James B. |
author_facet | Jamann, Tiffany M. Sood, Shilpa Wisser, Randall J. Holland, James B. |
author_sort | Jamann, Tiffany M. |
collection | PubMed |
description | Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequencing is a cost-effective strategy to obtain sequence information for loci of interest across many individuals, providing a less expensive approach to evaluating sequence variation at the population scale. Here we evaluate amplicon-based enrichment coupled with semiconductor sequencing on a validation set consisting of three maize inbred lines, two hybrids and 19 landrace accessions. We report the use of a multiplexed panel of 319 PCR assays that target 20 candidate loci associated with photoperiod sensitivity in maize while requiring 25 ng or less of starting DNA per sample. Enriched regions had an average on-target sequence read depth of 105 with 98% of the sequence data mapping to the maize ‘B73’ reference and 80% of the reads mapping to the target interval. Sequence reads were aligned to B73 and 1,486 and 1,244 variants were called using SAMtools and GATK, respectively. Of the variants called by both SAMtools and GATK, 30% were not previously reported in maize. Due to the high sequence read depth, heterozygote genotypes could be called with at least 92.5% accuracy in hybrid materials using GATK. The genetic data are congruent with previous reports of high total genetic diversity and substantial population differentiation among maize landraces. In conclusion, semiconductor sequencing of highly multiplexed PCR reactions is a cost-effective strategy for resequencing targeted genomic loci in diverse maize materials. |
format | Online Article Text |
id | pubmed-5207663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52076632017-01-19 High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time Jamann, Tiffany M. Sood, Shilpa Wisser, Randall J. Holland, James B. PLoS One Research Article Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequencing is a cost-effective strategy to obtain sequence information for loci of interest across many individuals, providing a less expensive approach to evaluating sequence variation at the population scale. Here we evaluate amplicon-based enrichment coupled with semiconductor sequencing on a validation set consisting of three maize inbred lines, two hybrids and 19 landrace accessions. We report the use of a multiplexed panel of 319 PCR assays that target 20 candidate loci associated with photoperiod sensitivity in maize while requiring 25 ng or less of starting DNA per sample. Enriched regions had an average on-target sequence read depth of 105 with 98% of the sequence data mapping to the maize ‘B73’ reference and 80% of the reads mapping to the target interval. Sequence reads were aligned to B73 and 1,486 and 1,244 variants were called using SAMtools and GATK, respectively. Of the variants called by both SAMtools and GATK, 30% were not previously reported in maize. Due to the high sequence read depth, heterozygote genotypes could be called with at least 92.5% accuracy in hybrid materials using GATK. The genetic data are congruent with previous reports of high total genetic diversity and substantial population differentiation among maize landraces. In conclusion, semiconductor sequencing of highly multiplexed PCR reactions is a cost-effective strategy for resequencing targeted genomic loci in diverse maize materials. Public Library of Science 2017-01-03 /pmc/articles/PMC5207663/ /pubmed/28045987 http://dx.doi.org/10.1371/journal.pone.0168910 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Jamann, Tiffany M. Sood, Shilpa Wisser, Randall J. Holland, James B. High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title | High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title_full | High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title_fullStr | High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title_full_unstemmed | High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title_short | High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time |
title_sort | high-throughput resequencing of maize landraces at genomic regions associated with flowering time |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207663/ https://www.ncbi.nlm.nih.gov/pubmed/28045987 http://dx.doi.org/10.1371/journal.pone.0168910 |
work_keys_str_mv | AT jamanntiffanym highthroughputresequencingofmaizelandracesatgenomicregionsassociatedwithfloweringtime AT soodshilpa highthroughputresequencingofmaizelandracesatgenomicregionsassociatedwithfloweringtime AT wisserrandallj highthroughputresequencingofmaizelandracesatgenomicregionsassociatedwithfloweringtime AT hollandjamesb highthroughputresequencingofmaizelandracesatgenomicregionsassociatedwithfloweringtime |