Cargando…
A Rough Set Bounded Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation
Accurate image segmentation is an important issue in image processing, where Gaussian mixture models play an important part and have been proven effective. However, most Gaussian mixture model (GMM) based methods suffer from one or more limitations, such as limited noise robustness, over-smoothness...
Autores principales: | Ji, Zexuan, Huang, Yubo, Sun, Quansen, Cao, Guo, Zheng, Yuhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207730/ https://www.ncbi.nlm.nih.gov/pubmed/28045950 http://dx.doi.org/10.1371/journal.pone.0168449 |
Ejemplares similares
-
Medical Image Registration Algorithm Based on Bounded Generalized Gaussian Mixture Model
por: Wang, Jingkun, et al.
Publicado: (2022) -
Supervoxel Segmentation with Voxel-Related Gaussian Mixture Model
por: Ban, Zhihua, et al.
Publicado: (2018) -
Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images
por: Chen, Yunjie, et al.
Publicado: (2016) -
Rough interfaces beyond the Gaussian approximation
por: Caselle, M., et al.
Publicado: (1994) -
Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians()
por: Lambert, Christian, et al.
Publicado: (2013)