Cargando…
Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT
Radiomics aims to quantitatively capture the complex tumor phenotype contained in medical images to associate them with clinical outcomes. This study investigates the impact of different types of computed tomography (CT) images on the prognostic performance of radiomic features for disease recurrenc...
Autores principales: | Huynh, Elizabeth, Coroller, Thibaud P., Narayan, Vivek, Agrawal, Vishesh, Romano, John, Franco, Idalid, Parmar, Chintan, Hou, Ying, Mak, Raymond H., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207741/ https://www.ncbi.nlm.nih.gov/pubmed/28046060 http://dx.doi.org/10.1371/journal.pone.0169172 |
Ejemplares similares
-
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
por: Hosny, Ahmed, et al.
Publicado: (2018) -
Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC
por: Dou, Tai H., et al.
Publicado: (2018) -
The impact of quantitative CT-based tumor volumetric features on the outcomes of patients with limited stage small cell lung cancer
por: Kamran, Sophia C., et al.
Publicado: (2020) -
Radiographic prediction of meningioma grade by semantic and radiomic features
por: Coroller, Thibaud P., et al.
Publicado: (2017) -
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
por: Wu, Weimiao, et al.
Publicado: (2016)