Cargando…
A weather-driven model of malaria transmission
BACKGROUND: Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. METHODS: This paper describes a mathematical-biological model of the parasite dynamics, comprising both the...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC520827/ https://www.ncbi.nlm.nih.gov/pubmed/15350206 http://dx.doi.org/10.1186/1475-2875-3-32 |
Sumario: | BACKGROUND: Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. METHODS: This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. RESULTS: Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. CONCLUSION: A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. |
---|