Cargando…

Levinson’s type generalization of the Jensen inequality and its converse for real Stieltjes measure

We derive the Levinson type generalization of the Jensen and the converse Jensen inequality for real Stieltjes measure, not necessarily positive. As a consequence, also the Levinson type generalization of the Hermite-Hadamard inequality is obtained. Similarly, we derive the Levinson type generalizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikić, Rozarija, Pečarić, Josip, Rodić, Mirna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209453/
https://www.ncbi.nlm.nih.gov/pubmed/28111504
http://dx.doi.org/10.1186/s13660-016-1274-y
Descripción
Sumario:We derive the Levinson type generalization of the Jensen and the converse Jensen inequality for real Stieltjes measure, not necessarily positive. As a consequence, also the Levinson type generalization of the Hermite-Hadamard inequality is obtained. Similarly, we derive the Levinson type generalization of Giaccardi’s inequality. The obtained results are then applied for establishing new mean-value theorems. The results from this paper represent a generalization of several recent results.