Cargando…
Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control
Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a maximum number of iterations may result in suboptimal represe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209604/ https://www.ncbi.nlm.nih.gov/pubmed/28097146 http://dx.doi.org/10.1155/2016/7060348 |
_version_ | 1782490758998130688 |
---|---|
author | Jonić, Slavica Sorzano, Carlos Oscar S. |
author_facet | Jonić, Slavica Sorzano, Carlos Oscar S. |
author_sort | Jonić, Slavica |
collection | PubMed |
description | Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a maximum number of iterations may result in suboptimal representations of the structure. An alternative is to set a desired error of approximation of the given EM map and then optimize the number of Gaussian functions to achieve this approximation error. In this article, we review different applications of such an approach that uses spherical Gaussian functions of fixed standard deviation, referred to as pseudoatoms. Some of these applications use EM-map normal mode analysis (NMA) with elastic network model (ENM) (applications such as predicting conformational changes of macromolecular complexes or exploring actual conformational changes by normal-mode-based analysis of experimental data) while some other do not use NMA (denoising of EM density maps). In applications based on NMA and ENM, the advantage of using pseudoatoms in EM-map coarse-grain models is that the ENM springs are easily assigned among neighboring grains thanks to their spherical shape and uniformed size. EM-map denoising based on the map coarse-graining was so far only shown using pseudoatoms as grains. |
format | Online Article Text |
id | pubmed-5209604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-52096042017-01-17 Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control Jonić, Slavica Sorzano, Carlos Oscar S. Biomed Res Int Review Article Three-dimensional Gaussian functions have been shown useful in representing electron microscopy (EM) density maps for studying macromolecular structure and dynamics. Methods that require setting a desired number of Gaussian functions or a maximum number of iterations may result in suboptimal representations of the structure. An alternative is to set a desired error of approximation of the given EM map and then optimize the number of Gaussian functions to achieve this approximation error. In this article, we review different applications of such an approach that uses spherical Gaussian functions of fixed standard deviation, referred to as pseudoatoms. Some of these applications use EM-map normal mode analysis (NMA) with elastic network model (ENM) (applications such as predicting conformational changes of macromolecular complexes or exploring actual conformational changes by normal-mode-based analysis of experimental data) while some other do not use NMA (denoising of EM density maps). In applications based on NMA and ENM, the advantage of using pseudoatoms in EM-map coarse-grain models is that the ENM springs are easily assigned among neighboring grains thanks to their spherical shape and uniformed size. EM-map denoising based on the map coarse-graining was so far only shown using pseudoatoms as grains. Hindawi Publishing Corporation 2016 2016-12-21 /pmc/articles/PMC5209604/ /pubmed/28097146 http://dx.doi.org/10.1155/2016/7060348 Text en Copyright © 2016 S. Jonić and C. O. S. Sorzano. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Jonić, Slavica Sorzano, Carlos Oscar S. Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title | Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title_full | Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title_fullStr | Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title_full_unstemmed | Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title_short | Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control |
title_sort | versatility of approximating single-particle electron microscopy density maps using pseudoatoms and approximation-accuracy control |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209604/ https://www.ncbi.nlm.nih.gov/pubmed/28097146 http://dx.doi.org/10.1155/2016/7060348 |
work_keys_str_mv | AT jonicslavica versatilityofapproximatingsingleparticleelectronmicroscopydensitymapsusingpseudoatomsandapproximationaccuracycontrol AT sorzanocarlososcars versatilityofapproximatingsingleparticleelectronmicroscopydensitymapsusingpseudoatomsandapproximationaccuracycontrol |