Cargando…
Estimation of nonclassical independent Gaussian processes by classical interferometry
We propose classical interferometry with low-intensity thermal radiation for the estimation of nonclassical independent Gaussian processes in material samples. We generally determine the mean square error of the phase-independent parameters of an unknown Gaussian process, considering a noisy source...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209653/ https://www.ncbi.nlm.nih.gov/pubmed/28051094 http://dx.doi.org/10.1038/srep39641 |
Sumario: | We propose classical interferometry with low-intensity thermal radiation for the estimation of nonclassical independent Gaussian processes in material samples. We generally determine the mean square error of the phase-independent parameters of an unknown Gaussian process, considering a noisy source of radiation the phase of which is not locked to the pump of the process. We verify the sufficiency of passive optical elements in the interferometer, active optical elements do not improve the quality of the estimation. We also prove the robustness of the method against the noise and loss in both interferometric channels and the sample. The proposed method is suitable even for the case when a source of radiation sufficient for homodyne detection is not available. |
---|