Cargando…
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
BACKGROUND: Feature selection, aiming to identify a subset of features among a possibly large set of features that are relevant for predicting a response, is an important preprocessing step in machine learning. In gene expression studies this is not a trivial task for several reasons, including pote...
Autores principales: | Radovic, Milos, Ghalwash, Mohamed, Filipovic, Nenad, Obradovic, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209828/ https://www.ncbi.nlm.nih.gov/pubmed/28049413 http://dx.doi.org/10.1186/s12859-016-1423-9 |
Ejemplares similares
-
Structured feature selection using coordinate descent optimization
por: Ghalwash, Mohamed F., et al.
Publicado: (2016) -
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013) -
Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection
por: Ma, Xin, et al.
Publicado: (2015) -
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
por: Liu, Xiling, et al.
Publicado: (2023) -
Identification of Candidate Genes Related to Inflammatory Bowel Disease Using Minimum Redundancy Maximum Relevance, Incremental Feature Selection, and the Shortest-Path Approach
por: Yuan, Fei, et al.
Publicado: (2017)