Cargando…
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
BACKGROUND: Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the sta...
Autores principales: | Yigzaw, Kassaye Yitbarek, Michalas, Antonis, Bellika, Johan Gustav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209873/ https://www.ncbi.nlm.nih.gov/pubmed/28049465 http://dx.doi.org/10.1186/s12911-016-0389-x |
Ejemplares similares
-
Privacy-preserving architecture for providing feedback to clinicians on their clinical performance
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2020) -
A Privacy-Preserving Audit and Feedback System for the Antibiotic Prescribing of General Practitioners: Survey Study
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2022) -
Privacy-preserving record linkage in large databases using secure multiparty computation
por: Laud, Peeter, et al.
Publicado: (2018) -
Privacy-preserving record linkage using Bloom filters
por: Schnell, Rainer, et al.
Publicado: (2009) -
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021)