Cargando…
Negative binomial mixed models for analyzing microbiome count data
BACKGROUND: Recent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to...
Autores principales: | Zhang, Xinyan, Mallick, Himel, Tang, Zaixiang, Zhang, Lei, Cui, Xiangqin, Benson, Andrew K., Yi, Nengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209949/ https://www.ncbi.nlm.nih.gov/pubmed/28049409 http://dx.doi.org/10.1186/s12859-016-1441-7 |
Ejemplares similares
-
Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
por: Zhang, Xinyan, et al.
Publicado: (2018) -
NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis
por: Zhang, Xinyan, et al.
Publicado: (2020) -
Bayesian hierarchical negative binomial models for multivariable analyses with applications to human microbiome count data
por: Pendegraft, Amanda H., et al.
Publicado: (2019) -
Negative binomial mixed models for analyzing longitudinal CD4 count data
por: Yirga, Ashenafi A., et al.
Publicado: (2020) -
Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
por: Zhang, Xinyan, et al.
Publicado: (2020)