Cargando…

An improved extraction method for surface dosage of insecticides on treated textile fabrics

BACKGROUND: Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. The use of insecticide-treated textiles is one of the most widespread control measures. This includes bed nets, b...

Descripción completa

Detalles Bibliográficos
Autores principales: Dieval, Florence, Bouyer, Jérémy, Fafet, Jean-François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209952/
https://www.ncbi.nlm.nih.gov/pubmed/28049476
http://dx.doi.org/10.1186/s12936-016-1647-1
_version_ 1782490828254478336
author Dieval, Florence
Bouyer, Jérémy
Fafet, Jean-François
author_facet Dieval, Florence
Bouyer, Jérémy
Fafet, Jean-François
author_sort Dieval, Florence
collection PubMed
description BACKGROUND: Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. The use of insecticide-treated textiles is one of the most widespread control measures. This includes bed nets, battle clothing or, more generally, textiles use for clothing. These textiles are generally treated with permethrin as active ingredient, which is dosed after extraction of the active molecule present throughout the fabric (measured in mg permethrin/g of fabric) and does not take the effective concentration on the textile surfaces into account. The objective of this study was to propose an improved dosage method that enables measurement of the bioavailable or effective part of active ingredients on the surface of textile treated with insecticides. METHODS: The proposed method relies on mechanical extraction of active molecules on the surface of the textile in direct contact with either the skin or with the targeted arthropod. RESULTS: The results showed that the amount of permethrin measured using the current method is about 200 times higher than the effective surface concentration of the insecticide. In addition, the type of weave or knit influences the effective concentrations of permethrin on the surface of the textile. With the current dosage method, the variation in the concentration of permethrin depending on the type of weave is maximum 8%, whereas with the proposed method, it varies by about 50%. These results were confirmed by bioassays, in which the type of weave significantly affected (p < 10(−3)) the 100% knockdown time of Anopheles gambiae. CONCLUSIONS: The bioefficacy of insecticide treatments of fabrics is directly correlated with the effective concentration of insecticide on the textile surface, which can be quantified using the method proposed. This improved method could be used to redefine the limits of actual concentrations of active substance after assessment of the bioefficacy of the treatment and the risk to human health. Further, it enables assessments of the kinetics of insecticide migration in the case of long-lasting insecticide treatment.
format Online
Article
Text
id pubmed-5209952
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-52099522017-01-04 An improved extraction method for surface dosage of insecticides on treated textile fabrics Dieval, Florence Bouyer, Jérémy Fafet, Jean-François Malar J Methodology BACKGROUND: Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. The use of insecticide-treated textiles is one of the most widespread control measures. This includes bed nets, battle clothing or, more generally, textiles use for clothing. These textiles are generally treated with permethrin as active ingredient, which is dosed after extraction of the active molecule present throughout the fabric (measured in mg permethrin/g of fabric) and does not take the effective concentration on the textile surfaces into account. The objective of this study was to propose an improved dosage method that enables measurement of the bioavailable or effective part of active ingredients on the surface of textile treated with insecticides. METHODS: The proposed method relies on mechanical extraction of active molecules on the surface of the textile in direct contact with either the skin or with the targeted arthropod. RESULTS: The results showed that the amount of permethrin measured using the current method is about 200 times higher than the effective surface concentration of the insecticide. In addition, the type of weave or knit influences the effective concentrations of permethrin on the surface of the textile. With the current dosage method, the variation in the concentration of permethrin depending on the type of weave is maximum 8%, whereas with the proposed method, it varies by about 50%. These results were confirmed by bioassays, in which the type of weave significantly affected (p < 10(−3)) the 100% knockdown time of Anopheles gambiae. CONCLUSIONS: The bioefficacy of insecticide treatments of fabrics is directly correlated with the effective concentration of insecticide on the textile surface, which can be quantified using the method proposed. This improved method could be used to redefine the limits of actual concentrations of active substance after assessment of the bioefficacy of the treatment and the risk to human health. Further, it enables assessments of the kinetics of insecticide migration in the case of long-lasting insecticide treatment. BioMed Central 2017-01-04 /pmc/articles/PMC5209952/ /pubmed/28049476 http://dx.doi.org/10.1186/s12936-016-1647-1 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Dieval, Florence
Bouyer, Jérémy
Fafet, Jean-François
An improved extraction method for surface dosage of insecticides on treated textile fabrics
title An improved extraction method for surface dosage of insecticides on treated textile fabrics
title_full An improved extraction method for surface dosage of insecticides on treated textile fabrics
title_fullStr An improved extraction method for surface dosage of insecticides on treated textile fabrics
title_full_unstemmed An improved extraction method for surface dosage of insecticides on treated textile fabrics
title_short An improved extraction method for surface dosage of insecticides on treated textile fabrics
title_sort improved extraction method for surface dosage of insecticides on treated textile fabrics
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209952/
https://www.ncbi.nlm.nih.gov/pubmed/28049476
http://dx.doi.org/10.1186/s12936-016-1647-1
work_keys_str_mv AT dievalflorence animprovedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics
AT bouyerjeremy animprovedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics
AT fafetjeanfrancois animprovedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics
AT dievalflorence improvedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics
AT bouyerjeremy improvedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics
AT fafetjeanfrancois improvedextractionmethodforsurfacedosageofinsecticidesontreatedtextilefabrics