Cargando…
Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
BACKGROUND: Cross-sectional studies with binary outcomes analyzed by logistic regression are frequent in the epidemiological literature. However, the odds ratio can importantly overestimate the prevalence ratio, the measure of choice in these studies. Also, controlling for confounding is not equival...
Autores principales: | Barros, Aluísio JD, Hirakata, Vânia N |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC521200/ https://www.ncbi.nlm.nih.gov/pubmed/14567763 http://dx.doi.org/10.1186/1471-2288-3-21 |
Ejemplares similares
-
Asymptotically Unbiased Estimation of Exposure Odds Ratios in Complete Records Logistic Regression
por: Bartlett, Jonathan W., et al.
Publicado: (2015) -
Errors in the use of Multivariable Logistic Regression Analysis: An Empirical Analysis
por: Malhotra, Rajeev Kumar
Publicado: (2020) -
Measures and models for causal inference in cross-sectional studies: arguments for the appropriateness of the prevalence odds ratio and related logistic regression
por: Reichenheim, Michael E, et al.
Publicado: (2010) -
Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping
por: Huang, Anhui, et al.
Publicado: (2013) -
Bias in odds ratios by logistic regression modelling and sample size
por: Nemes, Szilard, et al.
Publicado: (2009)