Cargando…
An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus
The unique anatomical and functional features of principal and interneuron populations are critical for the appropriate function of neuronal circuits. Cell type-specific properties are encoded by selective gene expression programs that shape molecular repertoires and synaptic protein complexes. Howe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213383/ https://www.ncbi.nlm.nih.gov/pubmed/27960072 http://dx.doi.org/10.7554/eLife.22757 |
_version_ | 1782491438444969984 |
---|---|
author | Nguyen, Thi-Minh Schreiner, Dietmar Xiao, Le Traunmüller, Lisa Bornmann, Caroline Scheiffele, Peter |
author_facet | Nguyen, Thi-Minh Schreiner, Dietmar Xiao, Le Traunmüller, Lisa Bornmann, Caroline Scheiffele, Peter |
author_sort | Nguyen, Thi-Minh |
collection | PubMed |
description | The unique anatomical and functional features of principal and interneuron populations are critical for the appropriate function of neuronal circuits. Cell type-specific properties are encoded by selective gene expression programs that shape molecular repertoires and synaptic protein complexes. However, the nature of such programs, particularly for post-transcriptional regulation at the level of alternative splicing is only beginning to emerge. We here demonstrate that transcripts encoding the synaptic adhesion molecules neurexin-1,2,3 are commonly expressed in principal cells and interneurons of the mouse hippocampus but undergo highly differential, cell type-specific alternative splicing. Principal cell-specific neurexin splice isoforms depend on the RNA-binding protein Slm2. By contrast, most parvalbumin-positive (PV(+)) interneurons lack Slm2, express a different neurexin splice isoform and co-express the corresponding splice isoform-specific neurexin ligand Cbln4. Conditional ablation of Nrxn alternative splice insertions selectively in PV(+) cells results in elevated hippocampal network activity and impairment in a learning task. Thus, PV-cell-specific alternative splicing of neurexins is critical for neuronal circuit function DOI: http://dx.doi.org/10.7554/eLife.22757.001 |
format | Online Article Text |
id | pubmed-5213383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-52133832017-01-09 An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus Nguyen, Thi-Minh Schreiner, Dietmar Xiao, Le Traunmüller, Lisa Bornmann, Caroline Scheiffele, Peter eLife Cell Biology The unique anatomical and functional features of principal and interneuron populations are critical for the appropriate function of neuronal circuits. Cell type-specific properties are encoded by selective gene expression programs that shape molecular repertoires and synaptic protein complexes. However, the nature of such programs, particularly for post-transcriptional regulation at the level of alternative splicing is only beginning to emerge. We here demonstrate that transcripts encoding the synaptic adhesion molecules neurexin-1,2,3 are commonly expressed in principal cells and interneurons of the mouse hippocampus but undergo highly differential, cell type-specific alternative splicing. Principal cell-specific neurexin splice isoforms depend on the RNA-binding protein Slm2. By contrast, most parvalbumin-positive (PV(+)) interneurons lack Slm2, express a different neurexin splice isoform and co-express the corresponding splice isoform-specific neurexin ligand Cbln4. Conditional ablation of Nrxn alternative splice insertions selectively in PV(+) cells results in elevated hippocampal network activity and impairment in a learning task. Thus, PV-cell-specific alternative splicing of neurexins is critical for neuronal circuit function DOI: http://dx.doi.org/10.7554/eLife.22757.001 eLife Sciences Publications, Ltd 2016-12-13 /pmc/articles/PMC5213383/ /pubmed/27960072 http://dx.doi.org/10.7554/eLife.22757 Text en © 2016, Nguyen et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Nguyen, Thi-Minh Schreiner, Dietmar Xiao, Le Traunmüller, Lisa Bornmann, Caroline Scheiffele, Peter An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title | An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title_full | An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title_fullStr | An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title_full_unstemmed | An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title_short | An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
title_sort | alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213383/ https://www.ncbi.nlm.nih.gov/pubmed/27960072 http://dx.doi.org/10.7554/eLife.22757 |
work_keys_str_mv | AT nguyenthiminh analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT schreinerdietmar analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT xiaole analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT traunmullerlisa analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT bornmanncaroline analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT scheiffelepeter analternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT nguyenthiminh alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT schreinerdietmar alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT xiaole alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT traunmullerlisa alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT bornmanncaroline alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus AT scheiffelepeter alternativesplicingswitchshapesneurexinrepertoiresinprincipalneuronsversusinterneuronsinthemousehippocampus |