Cargando…
MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study
PURPOSE: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta (CoA). To provide evidence on the accuracy of the proposed scheme, the compu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213689/ https://www.ncbi.nlm.nih.gov/pubmed/27384018 http://dx.doi.org/10.1002/jmri.25366 |
_version_ | 1782491495115259904 |
---|---|
author | Mirzaee, Hanieh Henn, Thomas Krause, Mathias J. Goubergrits, Leonid Schumann, Christian Neugebauer, Mathias Kuehne, Titus Preusser, Tobias Hennemuth, Anja |
author_facet | Mirzaee, Hanieh Henn, Thomas Krause, Mathias J. Goubergrits, Leonid Schumann, Christian Neugebauer, Mathias Kuehne, Titus Preusser, Tobias Hennemuth, Anja |
author_sort | Mirzaee, Hanieh |
collection | PubMed |
description | PURPOSE: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta (CoA). To provide evidence on the accuracy of the proposed scheme, the computed pressure drop values are compared against those obtained using the reference standard method of catheterization. MATERIALS AND METHODS: Pre‐ and posttreatment LBM‐based pressure gradients for 12 patients with CoA were simulated for the time point of peak systole using the open source library OpenLB. Four‐dimensional (4D) flow‐sensitive phase‐contrast MRI at 1.5 Tesla was used to acquire flow and to setup the simulation. The vascular geometry was reconstructed using 3D whole‐heart MRI. Patients underwent pre‐ and postinterventional pressure catheterization as a reference standard. RESULTS: There is a significant linear correlation between the pretreatment catheter pressure drops and those computed based on the LBM simulation, [Formula: see text] , [Formula: see text]. The bias was ‐0.58 ± 4.1 mmHg and was not significant ( [Formula: see text] with a 95% confidence interval (CI) of ‐3.22 to 2.06. For the posttreatment results, the bias was larger and at ‐2.54 ± 3.53 mmHg with a 95% CI of ‐0.17 to ‐4.91 mmHg. CONCLUSION: The results indicate a reasonable agreement between the simulation results and the catheter measurements. LBM‐based computational hemodynamics can be considered as an alternative to more traditional computational fluid dynamics schemes for noninvasive pressure calculations and can assist in diagnosis and therapy planning. Level of Evidence: 3 J. Magn. Reson. Imaging 2017;45:139–146. |
format | Online Article Text |
id | pubmed-5213689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52136892017-01-18 MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study Mirzaee, Hanieh Henn, Thomas Krause, Mathias J. Goubergrits, Leonid Schumann, Christian Neugebauer, Mathias Kuehne, Titus Preusser, Tobias Hennemuth, Anja J Magn Reson Imaging Original Research PURPOSE: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta (CoA). To provide evidence on the accuracy of the proposed scheme, the computed pressure drop values are compared against those obtained using the reference standard method of catheterization. MATERIALS AND METHODS: Pre‐ and posttreatment LBM‐based pressure gradients for 12 patients with CoA were simulated for the time point of peak systole using the open source library OpenLB. Four‐dimensional (4D) flow‐sensitive phase‐contrast MRI at 1.5 Tesla was used to acquire flow and to setup the simulation. The vascular geometry was reconstructed using 3D whole‐heart MRI. Patients underwent pre‐ and postinterventional pressure catheterization as a reference standard. RESULTS: There is a significant linear correlation between the pretreatment catheter pressure drops and those computed based on the LBM simulation, [Formula: see text] , [Formula: see text]. The bias was ‐0.58 ± 4.1 mmHg and was not significant ( [Formula: see text] with a 95% confidence interval (CI) of ‐3.22 to 2.06. For the posttreatment results, the bias was larger and at ‐2.54 ± 3.53 mmHg with a 95% CI of ‐0.17 to ‐4.91 mmHg. CONCLUSION: The results indicate a reasonable agreement between the simulation results and the catheter measurements. LBM‐based computational hemodynamics can be considered as an alternative to more traditional computational fluid dynamics schemes for noninvasive pressure calculations and can assist in diagnosis and therapy planning. Level of Evidence: 3 J. Magn. Reson. Imaging 2017;45:139–146. John Wiley and Sons Inc. 2016-07-07 2017-01 /pmc/articles/PMC5213689/ /pubmed/27384018 http://dx.doi.org/10.1002/jmri.25366 Text en © 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Mirzaee, Hanieh Henn, Thomas Krause, Mathias J. Goubergrits, Leonid Schumann, Christian Neugebauer, Mathias Kuehne, Titus Preusser, Tobias Hennemuth, Anja MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title | MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title_full | MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title_fullStr | MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title_full_unstemmed | MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title_short | MRI‐based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study |
title_sort | mri‐based computational hemodynamics in patients with aortic coarctation using the lattice boltzmann methods: clinical validation study |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213689/ https://www.ncbi.nlm.nih.gov/pubmed/27384018 http://dx.doi.org/10.1002/jmri.25366 |
work_keys_str_mv | AT mirzaeehanieh mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT hennthomas mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT krausemathiasj mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT goubergritsleonid mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT schumannchristian mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT neugebauermathias mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT kuehnetitus mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT preussertobias mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy AT hennemuthanja mribasedcomputationalhemodynamicsinpatientswithaorticcoarctationusingthelatticeboltzmannmethodsclinicalvalidationstudy |