Cargando…

Effectiveness of Exercise Interventions to Improve Postural Control in Older Adults: A Systematic Review and Meta-Analyses of Centre of Pressure Measurements

BACKGROUND: Previous reviews have shown balance in older adults to be improved with exercise. However, it is currently unclear whether postural control, indicated by centre of pressure (COP) measurement, can be improved in older adults and thus whether postural control could be a mechanism to improv...

Descripción completa

Detalles Bibliográficos
Autores principales: Low, Daniel C., Walsh, Gregory S., Arkesteijn, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215248/
https://www.ncbi.nlm.nih.gov/pubmed/27245061
http://dx.doi.org/10.1007/s40279-016-0559-0
Descripción
Sumario:BACKGROUND: Previous reviews have shown balance in older adults to be improved with exercise. However, it is currently unclear whether postural control, indicated by centre of pressure (COP) measurement, can be improved in older adults and thus whether postural control could be a mechanism to improve balance. OBJECTIVES: The purpose of this systematic review was to assess the effectiveness of force platform COP variables to identify changes in postural control following exercise interventions in older adults. In addition, a secondary purpose was to determine whether the exercise types (balance, resistance or multi-component exercise interventions) are equally effective to improve postural control. METHODS: Randomised controlled trials were identified using searches of databases and reference lists (PROSPERO registration number CRD42014010617). Trials performing exercise interventions, reporting force platform COP measurements, in participants with a mean age of ≥60 years were included. Risk of bias assessments were performed following the Cochrane guidelines. Data were pooled in meta-analyses, and standardised mean differences (SMDs) with 95 % confidence intervals (CIs) were calculated. RESULTS: Twenty-three trials met the inclusion criteria for the systematic review. Twenty-two trials could be defined as either utilising a balance, resistance or multi-component exercise intervention. These 22 trials were used in the meta-analyses. All trials reported measurements of double leg stance; eight trials reported additional stance conditions. The meta-analyses of double leg stance showed that balance exercise interventions significantly decreased total sway path length/velocity [SMD −1.13, 95 % CI −1.75 to −0.51 (eyes open); SMD −0.79, 95 % CI −1.33 to −0.26 (eyes closed)] and anterior-posterior sway path length/velocity [SMD −1.02, 95 % CI −2.01 to −0.02 (eyes open); SMD −0.82, 95 % CI −1.46 to −0.17 (eyes closed)] in both eyes open and eyes closed conditions. Balance exercise interventions also decreased sway area in eyes closed conditions (SMD −0.57, 95 % CI −1.01 to −0.13) and medio-lateral sway path length/velocity in eyes open conditions (SMD −0.8, 95 % CI −1.48 to −0.12). In contrast, neither resistance nor multi-component exercise interventions affected any of the included COP measurements. CONCLUSIONS: Postural control is improved by balance exercise interventions. In contrast, strength or multi-component exercise interventions did not influence postural control measurements in older adults. In addition, a lack of standardisation in collection protocol and COP variables calculated across trials was identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40279-016-0559-0) contains supplementary material, which is available to authorized users.