Cargando…
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
We present a deep convolutional neural network application based on autoencoders aimed at segmentation of increased signal regions in fluid-attenuated inversion recovery magnetic resonance imaging images. The convolutional autoencoders were trained on the publicly available Brain Tumor Image Segment...
Autores principales: | Korfiatis, Panagiotis, Kline, Timothy L., Erickson, Bradley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215737/ https://www.ncbi.nlm.nih.gov/pubmed/28066806 http://dx.doi.org/10.18383/j.tom.2016.00166 |
Ejemplares similares
-
Semi-Supervised Learning in Medical MRI Segmentation: Brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI
por: Rieu, ZunHyan, et al.
Publicado: (2021) -
Toolkits and Libraries for Deep Learning
por: Erickson, Bradley J., et al.
Publicado: (2017) -
Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys
por: Kline, Timothy L., et al.
Publicado: (2017) -
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
por: Akkus, Zeynettin, et al.
Publicado: (2015) -
Deep Learning in Radiology: Does One Size Fit All?
por: Erickson, Bradley J., et al.
Publicado: (2018)