Cargando…

Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid

In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-A...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Yu Seon, Ahn, Eun-Young, Park, Jisu, Kim, Tae Yoon, Hong, Jee Eun, Kim, Kyeongsoon, Park, Yohan, Park, Youmie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216008/
https://www.ncbi.nlm.nih.gov/pubmed/28058640
http://dx.doi.org/10.1186/s11671-016-1776-z
Descripción
Sumario:In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-AuNPs. The catalytic activity of CA-AuNPs was compared with that of centrifuged CA-AuNPs (cf-CA-AuNPs). Notably, cf-CA-AuNPs exhibited up to 6.41-fold higher catalytic activity compared with CA-AuNPs. The catalytic activity was dependent on the caffeic acid concentration, and the lowest concentration (0.08 mM) produced CA-AuNPs with the highest catalytic activity. The catalytic activities of both CA-AuNPs and cf-CA-AuNPs decreased with increasing caffeic acid concentration. Furthermore, a conversion yield of 4-nitrophenol to 4-aminophenol in the reaction mixture was determined to be 99.8% using reverse-phase high-performance liquid chromatography. The product, 4-aminophenol, was purified from the reaction mixture, and its structure was confirmed by (1)H-NMR. It can be concluded that the removal of the reducing agent, caffeic acid in the present study, significantly enhanced the catalytic activity of CA-AuNPs in the 4-nitrophenol reduction reaction.