Cargando…
Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) as...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216125/ https://www.ncbi.nlm.nih.gov/pubmed/28051091 http://dx.doi.org/10.1038/ncomms13932 |
_version_ | 1782491868958818304 |
---|---|
author | Freibert, Sven-A. Goldberg, Alina V. Hacker, Christian Molik, Sabine Dean, Paul Williams, Tom A. Nakjang, Sirintra Long, Shaojun Sendra, Kacper Bill, Eckhard Heinz, Eva Hirt, Robert P. Lucocq, John M Embley, T. Martin Lill, Roland |
author_facet | Freibert, Sven-A. Goldberg, Alina V. Hacker, Christian Molik, Sabine Dean, Paul Williams, Tom A. Nakjang, Sirintra Long, Shaojun Sendra, Kacper Bill, Eckhard Heinz, Eva Hirt, Robert P. Lucocq, John M Embley, T. Martin Lill, Roland |
author_sort | Freibert, Sven-A. |
collection | PubMed |
description | Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes. |
format | Online Article Text |
id | pubmed-5216125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52161252017-01-06 Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis Freibert, Sven-A. Goldberg, Alina V. Hacker, Christian Molik, Sabine Dean, Paul Williams, Tom A. Nakjang, Sirintra Long, Shaojun Sendra, Kacper Bill, Eckhard Heinz, Eva Hirt, Robert P. Lucocq, John M Embley, T. Martin Lill, Roland Nat Commun Article Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes. Nature Publishing Group 2017-01-04 /pmc/articles/PMC5216125/ /pubmed/28051091 http://dx.doi.org/10.1038/ncomms13932 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Freibert, Sven-A. Goldberg, Alina V. Hacker, Christian Molik, Sabine Dean, Paul Williams, Tom A. Nakjang, Sirintra Long, Shaojun Sendra, Kacper Bill, Eckhard Heinz, Eva Hirt, Robert P. Lucocq, John M Embley, T. Martin Lill, Roland Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title | Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title_full | Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title_fullStr | Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title_full_unstemmed | Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title_short | Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
title_sort | evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216125/ https://www.ncbi.nlm.nih.gov/pubmed/28051091 http://dx.doi.org/10.1038/ncomms13932 |
work_keys_str_mv | AT freibertsvena evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT goldbergalinav evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT hackerchristian evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT moliksabine evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT deanpaul evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT williamstoma evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT nakjangsirintra evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT longshaojun evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT sendrakacper evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT billeckhard evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT heinzeva evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT hirtrobertp evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT lucocqjohnm evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT embleytmartin evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis AT lillroland evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis |