Cargando…

Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis

Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) as...

Descripción completa

Detalles Bibliográficos
Autores principales: Freibert, Sven-A., Goldberg, Alina V., Hacker, Christian, Molik, Sabine, Dean, Paul, Williams, Tom A., Nakjang, Sirintra, Long, Shaojun, Sendra, Kacper, Bill, Eckhard, Heinz, Eva, Hirt, Robert P., Lucocq, John M, Embley, T. Martin, Lill, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216125/
https://www.ncbi.nlm.nih.gov/pubmed/28051091
http://dx.doi.org/10.1038/ncomms13932
_version_ 1782491868958818304
author Freibert, Sven-A.
Goldberg, Alina V.
Hacker, Christian
Molik, Sabine
Dean, Paul
Williams, Tom A.
Nakjang, Sirintra
Long, Shaojun
Sendra, Kacper
Bill, Eckhard
Heinz, Eva
Hirt, Robert P.
Lucocq, John M
Embley, T. Martin
Lill, Roland
author_facet Freibert, Sven-A.
Goldberg, Alina V.
Hacker, Christian
Molik, Sabine
Dean, Paul
Williams, Tom A.
Nakjang, Sirintra
Long, Shaojun
Sendra, Kacper
Bill, Eckhard
Heinz, Eva
Hirt, Robert P.
Lucocq, John M
Embley, T. Martin
Lill, Roland
author_sort Freibert, Sven-A.
collection PubMed
description Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.
format Online
Article
Text
id pubmed-5216125
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52161252017-01-06 Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis Freibert, Sven-A. Goldberg, Alina V. Hacker, Christian Molik, Sabine Dean, Paul Williams, Tom A. Nakjang, Sirintra Long, Shaojun Sendra, Kacper Bill, Eckhard Heinz, Eva Hirt, Robert P. Lucocq, John M Embley, T. Martin Lill, Roland Nat Commun Article Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes. Nature Publishing Group 2017-01-04 /pmc/articles/PMC5216125/ /pubmed/28051091 http://dx.doi.org/10.1038/ncomms13932 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Freibert, Sven-A.
Goldberg, Alina V.
Hacker, Christian
Molik, Sabine
Dean, Paul
Williams, Tom A.
Nakjang, Sirintra
Long, Shaojun
Sendra, Kacper
Bill, Eckhard
Heinz, Eva
Hirt, Robert P.
Lucocq, John M
Embley, T. Martin
Lill, Roland
Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title_full Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title_fullStr Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title_full_unstemmed Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title_short Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
title_sort evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216125/
https://www.ncbi.nlm.nih.gov/pubmed/28051091
http://dx.doi.org/10.1038/ncomms13932
work_keys_str_mv AT freibertsvena evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT goldbergalinav evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT hackerchristian evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT moliksabine evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT deanpaul evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT williamstoma evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT nakjangsirintra evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT longshaojun evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT sendrakacper evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT billeckhard evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT heinzeva evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT hirtrobertp evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT lucocqjohnm evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT embleytmartin evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis
AT lillroland evolutionaryconservationandinvitroreconstitutionofmicrosporidianironsulfurclusterbiosynthesis