Cargando…

Evolution of form in metal–organic frameworks

Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal–organic materials (MOMs), an emerging class of porous materials consisting of metal–organic frameworks (MOFs) and metal–organic polyhedra (MOPs). However, there are areas in MOM synth...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jiyoung, Kwak, Ja Hun, Choe, Wonyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216133/
https://www.ncbi.nlm.nih.gov/pubmed/28051066
http://dx.doi.org/10.1038/ncomms14070
Descripción
Sumario:Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal–organic materials (MOMs), an emerging class of porous materials consisting of metal–organic frameworks (MOFs) and metal–organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of MOM crystals. Here we demonstrate sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF. Moreover, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs. We anticipate that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future.