Cargando…

Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment

PURPOSE: About one-third of individuals with focal epilepsy continue to have seizures despite optimal medical management. These patients are potentially curable with neurosurgery if the epileptogenic zone (EZ) can be identified and resected. Stereo-electroencephalography (SEEG) to record epileptic a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sparks, Rachel, Zombori, Gergely, Rodionov, Roman, Nowell, Mark, Vos, Sjoerd B., Zuluaga, Maria A., Diehl, Beate, Wehner, Tim, Miserocchi, Anna, McEvoy, Andrew W., Duncan, John S., Ourselin, Sebastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216164/
https://www.ncbi.nlm.nih.gov/pubmed/27368184
http://dx.doi.org/10.1007/s11548-016-1452-x
_version_ 1782491877484789760
author Sparks, Rachel
Zombori, Gergely
Rodionov, Roman
Nowell, Mark
Vos, Sjoerd B.
Zuluaga, Maria A.
Diehl, Beate
Wehner, Tim
Miserocchi, Anna
McEvoy, Andrew W.
Duncan, John S.
Ourselin, Sebastien
author_facet Sparks, Rachel
Zombori, Gergely
Rodionov, Roman
Nowell, Mark
Vos, Sjoerd B.
Zuluaga, Maria A.
Diehl, Beate
Wehner, Tim
Miserocchi, Anna
McEvoy, Andrew W.
Duncan, John S.
Ourselin, Sebastien
author_sort Sparks, Rachel
collection PubMed
description PURPOSE: About one-third of individuals with focal epilepsy continue to have seizures despite optimal medical management. These patients are potentially curable with neurosurgery if the epileptogenic zone (EZ) can be identified and resected. Stereo-electroencephalography (SEEG) to record epileptic activity with intracranial depth electrodes may be required to identify the EZ. Each SEEG electrode trajectory, the path between the entry on the skull and the cerebral target, must be planned carefully to avoid trauma to blood vessels and conflicts between electrodes. In current clinical practice trajectories are determined manually, typically taking 2–3 h per patient (15 min per electrode). Manual planning (MP) aims to achieve an implantation plan with good coverage of the putative EZ, an optimal spatial resolution, and 3D distribution of electrodes. Computer-assisted planning tools can reduce planning time by quantifying trajectory suitability. METHODS: We present an automated multiple trajectory planning (MTP) algorithm to compute implantation plans. MTP uses dynamic programming to determine a set of plans. From this set a depth-first search algorithm finds a suitable plan. We compared our MTP algorithm to (a) MP and (b) an automated single trajectory planning (STP) algorithm on 18 patient plans containing 165 electrodes. RESULTS: MTP changed all 165 trajectories compared to MP. Changes resulted in lower risk (122), increased grey matter sampling (99), shorter length (92), and surgically preferred entry angles (113). MTP changed 42 % (69/165) trajectories compared to STP. Every plan had between 1 to 8 (median 3.5) trajectories changed to resolve electrode conflicts, resulting in surgically preferred plans. CONCLUSION: MTP is computationally efficient, determining implantation plans containing 7–12 electrodes within 1 min, compared to 2–3 h for MP.
format Online
Article
Text
id pubmed-5216164
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-52161642017-01-18 Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment Sparks, Rachel Zombori, Gergely Rodionov, Roman Nowell, Mark Vos, Sjoerd B. Zuluaga, Maria A. Diehl, Beate Wehner, Tim Miserocchi, Anna McEvoy, Andrew W. Duncan, John S. Ourselin, Sebastien Int J Comput Assist Radiol Surg Original Article PURPOSE: About one-third of individuals with focal epilepsy continue to have seizures despite optimal medical management. These patients are potentially curable with neurosurgery if the epileptogenic zone (EZ) can be identified and resected. Stereo-electroencephalography (SEEG) to record epileptic activity with intracranial depth electrodes may be required to identify the EZ. Each SEEG electrode trajectory, the path between the entry on the skull and the cerebral target, must be planned carefully to avoid trauma to blood vessels and conflicts between electrodes. In current clinical practice trajectories are determined manually, typically taking 2–3 h per patient (15 min per electrode). Manual planning (MP) aims to achieve an implantation plan with good coverage of the putative EZ, an optimal spatial resolution, and 3D distribution of electrodes. Computer-assisted planning tools can reduce planning time by quantifying trajectory suitability. METHODS: We present an automated multiple trajectory planning (MTP) algorithm to compute implantation plans. MTP uses dynamic programming to determine a set of plans. From this set a depth-first search algorithm finds a suitable plan. We compared our MTP algorithm to (a) MP and (b) an automated single trajectory planning (STP) algorithm on 18 patient plans containing 165 electrodes. RESULTS: MTP changed all 165 trajectories compared to MP. Changes resulted in lower risk (122), increased grey matter sampling (99), shorter length (92), and surgically preferred entry angles (113). MTP changed 42 % (69/165) trajectories compared to STP. Every plan had between 1 to 8 (median 3.5) trajectories changed to resolve electrode conflicts, resulting in surgically preferred plans. CONCLUSION: MTP is computationally efficient, determining implantation plans containing 7–12 electrodes within 1 min, compared to 2–3 h for MP. Springer International Publishing 2016-07-01 2017 /pmc/articles/PMC5216164/ /pubmed/27368184 http://dx.doi.org/10.1007/s11548-016-1452-x Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article
Sparks, Rachel
Zombori, Gergely
Rodionov, Roman
Nowell, Mark
Vos, Sjoerd B.
Zuluaga, Maria A.
Diehl, Beate
Wehner, Tim
Miserocchi, Anna
McEvoy, Andrew W.
Duncan, John S.
Ourselin, Sebastien
Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title_full Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title_fullStr Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title_full_unstemmed Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title_short Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment
title_sort automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (seeg) electrodes in epilepsy treatment
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216164/
https://www.ncbi.nlm.nih.gov/pubmed/27368184
http://dx.doi.org/10.1007/s11548-016-1452-x
work_keys_str_mv AT sparksrachel automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT zomborigergely automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT rodionovroman automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT nowellmark automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT vossjoerdb automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT zuluagamariaa automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT diehlbeate automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT wehnertim automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT miserocchianna automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT mcevoyandreww automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT duncanjohns automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment
AT ourselinsebastien automatedmultipletrajectoryplanningalgorithmfortheplacementofstereoelectroencephalographyseegelectrodesinepilepsytreatment