Cargando…

The Effect of Electronic Structure on the Phases Present in High Entropy Alloys

Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Leong, Zhaoyuan, Wróbel, Jan S., Dudarev, Sergei L., Goodall, Russell, Todd, Iain, Nguyen-Manh, Duc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216361/
https://www.ncbi.nlm.nih.gov/pubmed/28059106
http://dx.doi.org/10.1038/srep39803
Descripción
Sumario:Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these systems, experimental investigation has revealed that in many cases their structure is not a single solid solution phase, and that the rules may not accurately distinguish the stability of the phase boundaries. Here, a combined modelling and experimental approach that looks into the electronic structure is proposed to improve accuracy of the predictions of the majority phase. To do this, the Rigid Band model is generalised for magnetic systems in prediction of the majority phase most likely to be found. Good agreement is found when the predictions are confronted with data from experiments, including a new magnetic HEA system (CoFeNiV). This also includes predicting the structural transition with varying levels of constituent elements, as a function of the valence electron concentration, n, obtained from the integrated spin-polarised density of states. This method is suitable as a new predictive technique to identify compositions for further screening, in particular for magnetic HEAs.